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Max Flow Min Cut

Proof of Correctness for Ford-Fulkerson

We already know:

After each augmentation, we have a new �ow with more value.

For integral capacities, the algorithm terminates after at most C
rounds, where C =

∑
e∈δout(s) ce .

Remains to show: the �ow returned is maximum.

Proof strategy: show that the value of the �ow returned is equal to a

quantity which is an upper bound on the value of any �ow.

values of flows

capacities of cuts
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capacities of cuts
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Max Flow Min Cut

Cuts

Given a graph G = (V ,E ), a cut (A,B) is a partition of V into two

sets A and B , i.e., A ∩ B = ∅, A ∪ B = V .

Given a �ow network, an s-t cut is a cut (A,B) such that the source s
is in A and the sink t is in B .
Notation: For a set of nodes S ⊆ V , let δout(S) denote the set of

edges going out of S , and δin(S) the set of edges going into S .
The capacity of an s-t cut (A,B) is

c(A,B) :=
∑

e∈δout(A)

ce .
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sets A and B , i.e., A ∩ B = ∅, A ∪ B = V .

Given a �ow network, an s-t cut is a cut (A,B) such that s is in A
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edges going out of S , and δin(S) the set of edges going into S .
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Max Flow Min Cut

Flow across cuts

Given a �ow f and an s-t cut (A,B), de�ne

f out(A) :=
∑

e∈δout(A)

f (e), f in(A) :=
∑

e∈δin(A)

f (e).
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Max Flow Min Cut

Relating Flows to Cuts

Lemma

For any s-t cut (A,B) and any �ow f , the value of f , |f |, is
f out(A)− f in(A).

Corollary

For any s-t cut (A,B) and any �ow f , |f | ≤ c(A,B). If |f | = c(A,B),
then f in(A) = 0, and f (e) = ce for each e ∈ δout(A).

values of flows

capacities of cuts
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If |f | = c(A,B), all inequalities above must be tight.
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Max Flow Min Cut

Lemma

For any s-t cut (A,B) and any �ow f , the value of f , |f |, is
f out(A)− f in(A).

Proof of Lemma.

By induction on |A|. IH: Lemma statement. Base case: |A| = 1, A = {s},
f in(A) = 0, f out(A) =

∑
e∈δout(s) f (e) = |f | by de�nition.

Inductive step: Take v ∈ A, v 6= s. By IH,

|f | = f out(A \ {v})− f in(A \ {v}).

f out(A) = f out(A \ {v}) +
∑

e from v to A

f (e)−
∑

e from A\{v} to v

f (e);

f in(A) = f in(A \ {v}) +
∑

e from A to v

f (e)−
∑

e from v to A\{v}

f (e).
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Max Flow Min Cut

The Max Flow Min Cut

Theorem (Max-Flow Min-Cut)

The following statements are equivalent:

1 f is a maximum �ow on a �ow network G ;

2 There is an s-t cut (A,B) with c(A,B) = |f |;
3 There exists no augmenting path in the residual graph Gf .

Corollary

When the Ford-Fulkerson algorithm terminates, the �ow it returns is a

maximum �ow.
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Max Flow Min Cut

Proof of Max Flow Min Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:

1 f is a maximum �ow on a �ow network G ;

2 There is an s-t cut (A,B) with c(A,B) = |f |;
3 There exists no augmenting path in the residual graph Gf .

Proof.

2⇒ 1: For any other �ow f ′, by previous corollary, |f ′| ≤ c(A,B) = |f |.

1⇒ 3: If there were an augmenting path P , augmenting along P gives rise

to another �ow f ′ with |f ′| > |f |, contradicting f 's maximality.

3⇒ 2: Let S be the set of nodes reachable from s in Gf .

Claim: c(S ,S) = |f |.
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Max Flow Min Cut

Proof of Theorem (3⇒ 2)

Claim (Restatement)

If for a �ow f , there is no augmenting path in the residual graph Gf , let S
be the set of nodes reachable from s in Gf , then c(S , S) = |f |.

Proof.

There can be no edge from S to S in Gf , by de�nition of S . Hence:

1 For every edge e in G going from S to S , f (e) = ce , otherwise there

would be a forward edge from S to S in Gf ;

2 For every edge e in G going from S to S , f (e) = 0, otherwise there

would be a backward edge in Gf from S to S .

Therefore f out(S) =
∑

e∈δout(S) ce = c(S , S), f in(S) = 0, and

|f | = f out(S)− f in(S) = c(S ,S).
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Max Flow Min Cut

The Min Cut Problem

Problem

Input: A �ow network G = (V ,E ).

Output: An s-t cut (A,B) such that c(A,B) is minimum among all

s-t cuts.

If a cut's capacity is equal to the value of a �ow, its capacity must be

minimum.

Algorithm: Run a max �ow algorithm and �nd a max �ow f , build its

residual graph Gf , let A be the set of nodes reachable from s in Gf ,

let B be A.

Such a cut is called a min cut.
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Last Remarks

For �ow networks with integer capacities, there is always an

integer-valued maximum �ow.

Such an integral �ow can be found by the Ford-Fulkerson algorithm in

time O(Cm).

For all �ow networks (even where capacities are not integers), a

maximum �ow exists, and can be found in polynomial time. (More on

this later.)

Given a �ow, verifying whether it is a max �ow takes only O(m) time.
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