Max Flow Min Cut

Learning Goals

Definition of cuts and their capacities

Cut capacities are upper bounds on flow values
Max Flow Min Cut Theorem and its proof
Correctness of Ford-Fulkerson

Ford-Fulkerson as an algorithm to find min cuts

Properties of Ford-Fulkerson
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Max Flow Min Cut

Proof of Correctness for Ford-Fulkerson

We already know:
o After each augmentation, we have a new flow with more value.

o For integral capacities, the algorithm terminates after at most C
rounds, where C = Zeeéout(s) Ce.
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Remains to show: the flow returned is maximum.

Proof strategy: show that the value of the flow returned is equal to a
quantity which is an upper bound on the value of any flow.
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Proof of Correctness for Ford-Fulkerson

We already know:
o After each augmentation, we have a new flow with more value.

o For integral capacities, the algorithm terminates after at most C
rounds, where C = Zeeéout(s) Ce.

@ Remains to show: the flow returned is maximum.

@ Proof strategy: show that the value of the flow returned is equal to a
quantity which is an upper bound on the value of any flow.
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Cuts

e Given a graph G = (V,E), a cut (A, B) is a partition of V into two
sets Aand B, i.e, ANB=(, AUB=V.
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Cuts
e Given a graph G = (V,E), a cut (A, B) is a partition of V into two
sets Aand B, i.e, ANB=(, AUB=V.

o Given a flow network, an s-t cut is a cut (A, B) such that the source s
is in A and the sink t is in B.
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Cuts

e Given a graph G = (V,E), a cut (A, B) is a partition of V into two
sets Aand B, i.e, ANB=0, AUB=V.

o Given a flow network, an s-t cut is a cut (A, B) such that the source s
is in A and the sink t is in B.

@ Notation: For a set of nodes S C V/, let dout(S) denote the set of
edges going out of S, and din(S) the set of edges going into S.
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Cuts

e Given a graph G = (V,E), a cut (A, B) is a partition of V into two
sets Aand B, i.e, ANB=(, AUB=V.

o Given a flow network, an s-t cutis a cut (A, B) such that sisin A
and tis in B.

@ Notation: For a set of nodes S C V/, let dout(S) denote the set of
edges going out of S, and diy(S) the set of edges going into S.

@ The capacity of an s-t cut (A, B) is

c(A B) = Z Ce-

e€dout(A)

c({s, v}, {u, t})= 40
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Max Flow Min Cut

Flow across cuts
Given a flow f and an s-t cut (A, B), define

FU(A) = Y fle), f"A)= D f(e)

eeéout(A) eG(Sin(A)
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Max Flow Min Cut

Flow across cuts
Given a flow f and an s-t cut (A, B), define

FU(A) = Y fle), f"A)= D f(e)

eeéout(A) eG(Sin(A)

fout({s, v}) = 40;

fout({s, u}) = 30;
fin({s,u}) = 0.
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Max Flow Min Cut

Relating Flows to Cuts

f

For any s-t cut (A, B) and any flow f, the value of f,
fOUt(A) — fin(A).

, s
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Max Flow Min Cut

Relating Flows to Cuts

For any s-t cut (A, B) and any flow f, the value of f,
fOUt(A) — fin(A).

f

, s

v,

For any s-t cut (A, B) and any flow f, |f| < c(A, B). If |f| = ¢(A, B),

then fln(A) — O, and f(e) = Ce fOI’ each @€ 6out(A)-
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For any s-t cut (A, B) and any flow f, |f| < c(A, B). If |f| = ¢(A, B),
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Relating Flows to Cuts

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is
FOUt(A) — fin(A).

Corollary
For any s-t cut (A, B) and any flow f, |f| < c(A, B). If |f| = c(A, B),
then f"(A) = 0, and f(e) = ce for each e € Jous(A).

Proof of Corollary.

|f] = FOU(A) = FIM(A) < FUN(A) = D fle)< > ce=c(AB).

EE(Sout(A) 666011t(A)
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Relating Flows to Cuts

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is
FOUt(A) — fin(A).

Corollary
For any s-t cut (A, B) and any flow f, |f| < c(A, B). If |f| = c(A, B),
then f"(A) = 0, and f(e) = ce for each e € Jous(A).

Proof of Corollary.

|f] = FOU(A) = FIM(A) < FUN(A) = D fle)< > ce=c(AB).

EE(Sout(A) 666011t(A)

If |f| = c(A, B), all inequalities above must be tight. O
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Max Flow Min Cut

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is
fOUut(A) — Fin(A).

Proof of Lemma.
By induction on |A|. IH: Lemma statement. Base case: |A| =1, A= {s},
fin(A) =0, fOU(A) = ) f(e) = |f] by definition.

eE€dout (s
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Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is
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Max Flow Min Cut

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is
fOUut(A) — Fin(A).

Proof of Lemma.
By induction on |A|. IH: Lemma statement. Base case: |A| =1, A= {s},
fin(A) =0, fOUt(A) = ZeE(Som(s) f(e) = |f| by definition.
Inductive step: Take v € A, v # 5. By IH,
|f = U (AN {v}) — F(A\ {v}).
PR (A) = FU(AN v+ Y fle) - > f(e);

e from v to A e from A\{v} to v
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Max Flow Min Cut

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is

fout(A) — Fin(A).

Proof of Lemma.

A = YA ) Y - Y ()

e from v to A e from A\{v} to v
FR(A) = FR(A\ {v}) + fe) - > f(e).
e from A to v e from v to A\{v}
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Max Flow Min Cut

Lemma

For any s-t cut (A, B) and any flow f, the value of f, |f|, is

fout(A) — Fin(A).

Proof of Lemma.

A = YA ) Y - Y ()

e from v to A e from A\{v} to v
FR(A) = FR(A\ {v}) + fe) - > f(e).
e from A to v e from v to A\{v}

FOU(A) — Fn(A) = FU(AN {v}) — FR(A\ {v})
+( Yo fle)- > f(e))f.
eEdout(v) eEdin(v)
Ul
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The Max Flow Min Cut

The following statements are equivalent:

Q f is a maximum flow on a flow network G;
@ There is an s-t cut (A, B) with c¢(A, B) = |f
© There exists no augmenting path in the residual graph Gy.

’
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The Max Flow Min Cut

The following statements are equivalent:
Q f is a maximum flow on a flow network G;
@ There is an s-t cut (A, B) with c¢(A, B) = |f
© There exists no augmenting path in the residual graph Gy. )
Corollary
When the Ford-Fulkerson algorithm terminates, the flow it returns is a
maximum flow.

’

\.
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Proof of Max Flow Min Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:
Q f is a maximum flow on a flow network G;
Q There is an s-t cut (A, B) with c(A, B) = |f|;
© There exists no augmenting path in the residual graph Gr.

Proof.
2 = 1: For any other flow f’, by previous corollary, |f'| < c(A, B) = |f].
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Proof of Max Flow Min Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:

Q f is a maximum flow on a flow network G;
Q There is an s-t cut (A, B) with c(A,B) = |f
© There exists no augmenting path in the residual graph Gr.

’

Proof.

2 = 1: For any other flow ', by previous corollary, |f'| < c(A, B) = |f|.
1 = 3: If there were an augmenting path P, augmenting along P gives rise
to another flow ' with |f’| > |f|, contradicting f’s maximality.
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Proof of Max Flow Min Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:

Q f is a maximum flow on a flow network G;
Q There is an s-t cut (A, B) with c(A,B) = |f
© There exists no augmenting path in the residual graph Gr.

’

Proof.

2 = 1: For any other flow f’, by previous corollary, |f'| < c(A, B) = |f].

1 = 3: If there were an augmenting path P, augmenting along P gives rise
to another flow ' with |f’| > |f|, contradicting f’s maximality.

3 = 2: Let S be the set of nodes reachable from s in Gf.

Claim: ¢(S,S) = |f].
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Max Flow Min Cut

Proof of Theorem (3 = 2)

If for a flow f, there is no augmenting path in the residual graph Gy, let S
be the set of nodes reachable from s in Gy, then ¢(S,S) = |f|.
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Max Flow Min Cut

Proof of Theorem (3 = 2)

Claim (Restatement)

If for a flow f, there is no augmenting path in the residual graph Gy, let S
be the set of nodes reachable from s in Gy, then ¢(S,S) = |f|.

Proof.

There can be no edge from S to S in Gy, by definition of S. Hence:
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be the set of nodes reachable from s in Gy, then ¢(S,S) = |f|.

Proof.
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@ For every edge e in G going from S to S, f(e) = ce, otherwise there
would be a forward edge from S to S in Gy;
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Proof of Theorem (3 = 2)

Claim (Restatement)

If for a flow f, there is no augmenting path in the residual graph Gy, let S
be the set of nodes reachable from s in Gy, then ¢(S,S) = |f|.

Proof.

There can be no edge from S to S in Gy, by definition of S. Hence:

@ For every edge e in G going from S to S, f(e) = ce, otherwise there
would be a forward edge from S to S in Gy;

@ For every edge e in G going from S to S, f(e) = 0, otherwise there
would be a backward edge in G from S to S.

Therefore fOU(S) = D eCoous(S) Co = c(S,S), f"(S) =0, and
|| = Fou(S) — Fin(S) = (S, S).
Ll
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[llustration of 3 = 2

Max flow
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[llustration of 3 = 2

Max flow Residual graph
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Max flow Residual graph
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[llustration of 3 = 2

Another min cut.
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The Min Cut Problem

o Input: A flow network G = (V, E).

o Output: An s-t cut (A, B) such that c(A, B) is minimum among all
S-t cuts.
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The Min Cut Problem

Problem
o Input: A flow network G = (V,E).

o Output: An s-t cut (A, B) such that c(A, B) is minimum among all
S-t cuts.

o If a cut’s capacity is equal to the value of a flow, its capacity must be
minimum.
@ Algorithm: Run a max flow algorithm and find a max flow f, build its

residual graph Gy, let A be the set of nodes reachable from s in Gy,
let B be A.
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The Min Cut Problem

Problem
o Input: A flow network G = (V,E).

o Output: An s-t cut (A, B) such that c(A, B) is minimum among all
S-t cuts.

o If a cut’s capacity is equal to the value of a flow, its capacity must be
minimum.

@ Algorithm: Run a max flow algorithm and find a max flow f, build its
residual graph Gy, let A be the set of nodes reachable from s in Gy,
let B be A.

Such a cut is called a min cut.
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Max Flow Min Cut

Last Remarks

@ For flow networks with integer capacities, there is always an
integer-valued maximum flow.
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Max Flow Min Cut

Last Remarks

@ For flow networks with integer capacities, there is always an
integer-valued maximum flow.
e Such an integral flow can be found by the Ford-Fulkerson algorithm in
time O(Cm).
@ For all flow networks (even where capacities are not integers), a
maximum flow exists, and can be found in polynomial time. (More on
this later.)

o Given a flow, verifying whether it is a max flow takes only O(m) time.
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