P, NP and NP-Completeness

Learning Goals

Define class P and NP.

Understand the relationship between P and NP.

Define what is an NP-complete problem.

State the decision problems SAT and 3-SAT.

State Cook-Levin Theorem.

Master the procedure to prove a problem is NP-complete.
Understand the reduction from 3-SAT to INDEPENDENT SET.
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P, NP and NP-Completeness

The classes P

Note: In this lecture we cannot get into the nuts and bolts of some
definitions or theorems, because we haven't defined a computation model
(e.g. Turing machine). Nevertheless, everything stated can be rigorously
proved.

Definition
The class P is the set of all decision problems that can be solved in
polynomial time.
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P, NP and NP-Completeness

The classes P

Note: In this lecture we cannot get into the nuts and bolts of some
definitions or theorems, because we haven't defined a computation model
(e.g. Turing machine). Nevertheless, everything stated can be rigorously
proved.

Definition

The class P is the set of all decision problems that can be solved in
polynomial time.

Recall from 221/320: by polynomial time, we mean polynomial in the
length of the input.

Example: decision versions of Shortest Path, Minimum Spanning Tree, Max
Flow, Min Cut, Bipartite Matching, Baseball Elimination...
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The class NP

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time verifier algorithm V for the following task:
@ if the answer to an instance a of A is YES, then there exists a
polynomial-length certificate c(a), such that V, when provided with
both the instance a and the certificate, will return yes;

@ if the answer to an instance a of A is NO, then V returns NO, no
matter what certificate it is given.
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The class NP

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time verifier algorithm V for the following task:
@ if the answer to an instance a of A is YES, then there exists a
polynomial-length certificate c(a), such that V, when provided with
both the instance a and the certificate, will return yes;
@ if the answer to an instance a of A is NO, then V returns NO, no
matter what certificate it is given.

Example: INDEPENDENT SET
o Input: graph G, integer k
o Certificate: a set S of nodes in G

o Verifier: check whether S is an independent set, and whether |S| > k.
If so, return YES; if not, return NO.
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Proposition
P C NP.
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P, NP and NP-Completeness

Relationship between P and NP

Proposition
P C NP.

Given any problem in P, let the verifier V be a polynomial-time algorithm
that solves the problem . Let the certificate be (). O

NP C P? I

One of the most famous questions in (theoretical) computer science.
Some philosophical discussion.
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NP Completeness

@ A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by a meaningful reduction.
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NP Completeness

@ A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by a meaningful reduction.
o Intuitively, a problem complete in C is a hardest problem in C.

@ For the class NP, the “meaningful” reductions are polynomial-time
reductions.

Definition

A problem is NP-complete if it is in NP and if all other problems in NP can
be polynomial-time reduced to it.
Formally, a problem A is NP-complete if A € NP and, VB € NP, B <p A.
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SAT and Cook-Levin Theorem

Definition

In a Boolean satisfiability (SAT) problem, we are given a Boolean formula
in conjunctive normal form (CNF); that is, the formula is the AND of
(many) OR clauses. We must decide whether there is a way of assigning
TRUE and FALSE to each variable so that the formula evaluates to TRUE.
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SAT and Cook-Levin Theorem

Definition

In a Boolean satisfiability (SAT) problem, we are given a Boolean formula
in conjunctive normal form (CNF); that is, the formula is the AND of
(many) OR clauses. We must decide whether there is a way of assigning
TRUE and FALSE to each variable so that the formula evaluates to TRUE.

Example: (x1V =x2 Vx3) A (—x1 V —x3 Vxa) A (x2 V x3 V —xq)

Theorem (Cook-Levin)
SAT is NP-complete.

A meaningful proof needs a rigorous definition of Turing machines.
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P, NP and NP-Completeness

Review of last lecture

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time verifier algorithm V for the following task:

@ if the answer to an instance a of A is YES, then there exists a
polynomial-length certificate c(a), such that V, when provided with
both the instance a and the certificate, will return yes;

Q if the answer to an instance a of A is NO, then V returns NO, no
matter what certificate it is given.

A problem A is NP-complete if A € NP and, VB € NP, B <p A.

SAT Example: (x1 V —x2 V x3) A (=x1 V=x3 V xa) A (x2 V x3 V —1xq)
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P, NP and NP-Completeness

Review of last lecture

Definition

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time verifier algorithm V for the following task:

@ if the answer to an instance a of A is YES, then there exists a
polynomial-length certificate c(a), such that V, when provided with
both the instance a and the certificate, will return yes;

Q if the answer to an instance a of A is NO, then V returns NO, no
matter what certificate it is given.

Definition
A problem A is NP-complete if A € NP and, VB € NP, B <p A.

SAT Example: (x1 V —x2 V x3) A (=x1 V=x3 V xa) A (x2 V x3 V —1xq)
Theorem (Cook-Levin)

SAT is NP-comﬁlete.
October 11, 2019 7/15




3-SAT

Definition

A 3-SAT problem is a SAT problem wherein each clause contains three
literals.

. SR



3-SAT

Definition

A 3-SAT problem is a SAT problem wherein each clause contains three
literals.

3-SAT is NP-complete.

. SR



3-SAT

Definition
A 3-SAT problem is a SAT problem wherein each clause contains three
literals.

3-SAT is NP-complete.

How do we show a new problem is NP complete?

Polynomial reduction is transitive, i.e., if A <p B, B <p C, then A <p C. ’

. SR



3-SAT

Definition
A 3-SAT problem is a SAT problem wherein each clause contains three
literals.

3-SAT is NP-complete.

How do we show a new problem is NP complete?

Polynomial reduction is transitive, i.e., if A <p B, B <p C, then A <p C. J

Proof sketch: If the polynomial-time reduction from A to B runs in time
p1(+), and the reduction from B to C runs in time px(-), then A can be
solved by concatenating the reductions, with oracle access to C, and
running time O(p1(-)p2(+)), which is still polynomial.
] October 11, 2019  8/15
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If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.
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Corollary

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

o

We need to show that, for any C € NP, C <p A.
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Corollary

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

o

We need to show that, for any C € NP, C <p A.
@ Since B is NP complete, C <p B;

.
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P, NP and NP-Completeness

Corollary

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

v,

We need to show that, for any C € NP, C <p A.
@ Since B is NP complete, C <p B;
@ But B <p A, therefore C <p A by proposition.

.

. Db W, D O



P, NP and NP-Completeness

Procedure to show NP completeness

Given a problem A, to show it is NP-complete, we show that

©Q Aisin NP. We show a polynomial-time verifier: for TRUE instances,
show polynomial-length certificates that makes the verifier accept, and
for FALSE instances, show the verifier never accepts;

© Take an NP-complete problem B, and show B <p A. To do this, we

o Give a polynomial-time algorithm ¢ which takes as input an instance
of B and outputs an instance of A;

e Show that an instance b of B has answer TRUE if and only if the
instance (b) has answer TRUE.
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First example of NP-completeness reduction

INDEPENDENT SET is NP complete.
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First example of NP-completeness reduction

INDEPENDENT SET is NP complete.

Q@ INDEPENDENT SET is in NP. A certificate for a YES instance is an
independent set of size k. The verifier checks its validity.
@ We show 3-SAT <p INDEPENDENT SET. Given a 3-SAT formula

with m clauses, construct an undirected graph G:
@ For each clause, construct three nodes representing the three literals;
@ Connect any two nodes that represent, respectively, a variable and its

negation (e.g. x and —x,);
© For each clause, connect the three nodes representing its literals.

Now show that the 3-SAT formula is satisfiable if and only if G has an
independent set of size at least m.
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Example instance

)

_\x4
2 N

3

Example: (x1 V —x0 Vx3) A (=x1 Vx5 Vxa) A (X VX3V -xg)
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Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.

Proof.
3-SAT satisfiable = G having independent set S of size m:
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Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.

Proof.

3-SAT satisfiable = G having independent set S of size m: Given a
satisfying truth assignment, each clause has a literal that is true.
Include in S the corresponding node in the 3-cycle. Then |S| = m.
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Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.

Proof.

3-SAT satisfiable = G having independent set S of size m: Given a
satisfying truth assignment, each clause has a literal that is true.
Include in S the corresponding node in the 3-cycle. Then |S| = m.
S is an independent set:

© No edge in any triangle is in E(S);

@ No edge connecting a variable and its negate is in E(S).
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P, NP and NP-Completeness

Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.

Proof.

G having an independent set S of size m = 3-SAT formula satisfiable:
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Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.
Proof.

G having an independent set S of size m = 3-SAT formula satisfiable:
S must have one node from each 3-cycle corresponding to a clause.

| \
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P, NP and NP-Completeness

Proof cont.

The 3-SAT formula is satisfiable if and only if G has an independent set of
size at least m.

Proof.

G having an independent set S of size m = 3-SAT formula satisfiable:

S must have one node from each 3-cycle corresponding to a clause.
Construct a truth assignment by letting the corresponding literal be TRUE.
(After this, if some variables don’t have an assignment, give them arbitrary
assignment.)

@ There is no contradiction in this assignment.

@ All clauses are satisfied.
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A little summary

@ We have shown: 3-SAT <p INDEPENDENT SET <p VERTEX
COVER <p SET COVER

@ These problems are all clearly in NP.
@ Both SAT and 3-SAT are NP complete

@ Therefore all these problems are NP complete.
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A little summary

We have shown: 3-SAT <p INDEPENDENT SET <p VERTEX
COVER <p SET COVER

These problems are all clearly in NP.

Both SAT and 3-SAT are NP complete

Therefore all these problems are NP complete.

Note that VERTEX COVER can be solved in polynomial time for
bipartite graphs.

For non-bipartite graphs, maximum matching can still be solved in

polynomial time. But the size of the smallest vertex cover can be
strictly larger than the size of the maximum matching.
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