
P, NP and NP-Completeness

Learning Goals

De�ne class P and NP.

Understand the relationship between P and NP.

De�ne what is an NP-complete problem.

State the decision problems SAT and 3-SAT.

State Cook-Levin Theorem.

Master the procedure to prove a problem is NP-complete.

Understand the reduction from 3-SAT to INDEPENDENT SET.
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P, NP and NP-Completeness

The classes P

Note: In this lecture we cannot get into the nuts and bolts of some
de�nitions or theorems, because we haven't de�ned a computation model
(e.g. Turing machine). Nevertheless, everything stated can be rigorously
proved.

De�nition

The class P is the set of all decision problems that can be solved in
polynomial time.

Recall from 221/320: by polynomial time, we mean polynomial in the
length of the input.

Example: decision versions of Shortest Path, Minimum Spanning Tree, Max
Flow, Min Cut, Bipartite Matching, Baseball Elimination...
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P, NP and NP-Completeness

The class NP

De�nition

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time veri�er algorithm V for the following task:

1 if the answer to an instance a of A is YES, then there exists a
polynomial-length certi�cate c(a), such that V , when provided with
both the instance a and the certi�cate, will return yes;

2 if the answer to an instance a of A is NO, then V returns NO, no
matter what certi�cate it is given.

Example: INDEPENDENT SET

Input: graph G , integer k

Certi�cate: a set S of nodes in G

Veri�er: check whether S is an independent set, and whether |S | ≥ k .
If so, return YES; if not, return NO.
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P, NP and NP-Completeness

Relationship between P and NP

Proposition

P ⊆ NP.

Proof.

Given any problem in P, let the veri�er V be a polynomial-time algorithm
that solves the problem . Let the certi�cate be ∅.

Question

NP ⊆ P?

One of the most famous questions in (theoretical) computer science.
Some philosophical discussion.
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P, NP and NP-Completeness

NP Completeness

A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by a meaningful reduction.

Intuitively, a problem complete in C is a hardest problem in C.
For the class NP, the �meaningful� reductions are polynomial-time
reductions.

De�nition

A problem is NP-complete if it is in NP and if all other problems in NP can
be polynomial-time reduced to it.
Formally, a problem A is NP-complete if A ∈ NP and, ∀B ∈ NP, B ≤P A.
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P, NP and NP-Completeness

SAT and Cook-Levin Theorem

De�nition

In a Boolean satis�ability (SAT) problem, we are given a Boolean formula
in conjunctive normal form (CNF); that is, the formula is the AND of
(many) OR clauses. We must decide whether there is a way of assigning
TRUE and FALSE to each variable so that the formula evaluates to TRUE.

Example: (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

Theorem (Cook-Levin)

SAT is NP-complete.

A meaningful proof needs a rigorous de�nition of Turing machines.
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P, NP and NP-Completeness

Review of last lecture

De�nition

A decision problem A is in class NP (nondeterministic polynomial time) if
there exists a polynomial-time veri�er algorithm V for the following task:

1 if the answer to an instance a of A is YES, then there exists a
polynomial-length certi�cate c(a), such that V , when provided with
both the instance a and the certi�cate, will return yes;

2 if the answer to an instance a of A is NO, then V returns NO, no
matter what certi�cate it is given.

De�nition

A problem A is NP-complete if A ∈ NP and, ∀B ∈ NP, B ≤P A.

SAT Example: (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)
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P, NP and NP-Completeness

3-SAT

De�nition

A 3-SAT problem is a SAT problem wherein each clause contains three
literals.

Theorem

3-SAT is NP-complete.

How do we show a new problem is NP complete?

Proposition

Polynomial reduction is transitive, i.e., if A ≤P B , B ≤P C , then A ≤P C .

Proof sketch: If the polynomial-time reduction from A to B runs in time
p1(·), and the reduction from B to C runs in time p2(·), then A can be
solved by concatenating the reductions, with oracle access to C , and
running time O(p1(·)p2(·)), which is still polynomial.
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P, NP and NP-Completeness

Corollary

If a problem A is in NP, and if there is any NP-complete problem B such

that B ≤P A, then A is NP-complete.

Proof.

We need to show that, for any C ∈ NP, C ≤P A.

Since B is NP complete, C ≤P B ;

But B ≤P A, therefore C ≤P A by proposition.
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P, NP and NP-Completeness

Procedure to show NP completeness

Given a problem A, to show it is NP-complete, we show that

1 A is in NP. We show a polynomial-time veri�er: for TRUE instances,
show polynomial-length certi�cates that makes the veri�er accept, and
for FALSE instances, show the veri�er never accepts;

2 Take an NP-complete problem B , and show B ≤P A. To do this, we

Give a polynomial-time algorithm ϕ which takes as input an instance
of B and outputs an instance of A;
Show that an instance b of B has answer TRUE if and only if the
instance ϕ(b) has answer TRUE.
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P, NP and NP-Completeness

First example of NP-completeness reduction

Theorem

INDEPENDENT SET is NP complete.

Proof.

1 INDEPENDENT SET is in NP. A certi�cate for a YES instance is an
independent set of size k . The veri�er checks its validity.

2 We show 3-SAT ≤P INDEPENDENT SET. Given a 3-SAT formula
with m clauses, construct an undirected graph G :

1 For each clause, construct three nodes representing the three literals;
2 Connect any two nodes that represent, respectively, a variable and its

negation (e.g. x2 and ¬x2);
3 For each clause, connect the three nodes representing its literals.

Now show that the 3-SAT formula is satis�able if and only if G has an
independent set of size at least m.
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P, NP and NP-Completeness

Example instance

x1

¬x2

x3

¬x1

¬x3

x4

x2

x3 ¬x4

Example: (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)
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P, NP and NP-Completeness

Proof cont.

Claim

The 3-SAT formula is satis�able if and only if G has an independent set of
size at least m.

Proof.

3-SAT satis�able ⇒ G having independent set S of size m:

Given a
satisfying truth assignment, each clause has a literal that is true.
Include in S the corresponding node in the 3-cycle. Then |S | = m.
S is an independent set:

1 No edge in any triangle is in E (S);

2 No edge connecting a variable and its negate is in E (S).
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A little summary

We have shown: 3-SAT ≤P INDEPENDENT SET ≤P VERTEX
COVER ≤P SET COVER

These problems are all clearly in NP.

Both SAT and 3-SAT are NP complete

Therefore all these problems are NP complete.

Note that VERTEX COVER can be solved in polynomial time for
bipartite graphs.

For non-bipartite graphs, maximum matching can still be solved in
polynomial time. But the size of the smallest vertex cover can be
strictly larger than the size of the maximum matching.
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