Disjoint-Paths Covers

Learning Goals

@ Definition of disjoint-path covers and the kind of problems they model

@ Reduction of the disjoint-path covers problem to bipartite matching
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Motivating Question

@ There are n construction sites in different locations; each of them
needs a heavy machine for a project on a particular day. The machine
needed by each site is identical.
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Motivating Question

@ There are n construction sites in different locations; each of them
needs a heavy machine for a project on a particular day. The machine
needed by each site is identical.

@ Site / needs the machine from time a; to b;;
o It takes time ¢;; to move the machine from site / to site j;

@ How many machines do we need so that all sites can get their jobs
done?
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Model

o Construct a directed graph G, each node v; for a site /;
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Model

o Construct a directed graph G, each node v; for a site /;
@ There is an edge from v; to v; if it is feasible to move a machine to
site j after it is used by site i:

b,'—l—C,'j < aj.

Note that the resulting graph is acyclic;
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Model

o Construct a directed graph G, each node v; for a site /;

@ There is an edge from v; to v; if it is feasible to move a machine to
site j after it is used by site i:

b,'—l—C,'j < aj.

Note that the resulting graph is acyclic;

@ A path in G contains a set of sites whose jobs can be done
sequentially by one machine.
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Model

o Construct a directed graph G, each node v; for a site /;

@ There is an edge from v; to v; if it is feasible to move a machine to
site j after it is used by site i:

b,'—l—C,'j < aj.

Note that the resulting graph is acyclic;

@ A path in G contains a set of sites whose jobs can be done
sequentially by one machine.

o We'd like to find a minimum set of paths so that each vertex is on one
path.
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Disjoint-Paths Covers

Problem Formulation

Given a directed graph, a set P of simple paths is a path cover if each node
lies on at least one path in P.
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Disjoint-Paths Covers

Problem Formulation

Given a directed graph, a set P of simple paths is a path cover if each node
lies on at least one path in P.

A path cover P is a disjoint-path cover if each vertex lies on exactly one
path in P.
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Disjoint-Paths Covers

Problem Formulation

Definition

Given a directed graph, a set P of simple paths is a path cover if each node
lies on at least one path in P.

A path cover P is a disjoint-path cover if each vertex lies on exactly one
path in P.

@ Input: Directed acyclic graph (DAG) G = (V, E)
@ OQutput: A smallest disjoint-path cover P
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Disjoint-Paths Covers

Problem Formulation

Definition

Given a directed graph, a set P of simple paths is a path cover if each node
lies on at least one path in P.

A path cover P is a disjoint-path cover if each vertex lies on exactly one
path in P.

@ Input: Directed acyclic graph (DAG) G = (V, E)
@ OQutput: A smallest disjoint-path cover P
Remark: The problem without the acyclic condition is NP-hard.
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Reduction to Bipartite Matching

The algorithm:

o Construct a bipartite graph G’ = (L, R, F); for each node v of G,

create /, € Land r, € R;
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Disjoint-Paths Covers

Reduction to Bipartite Matching

The algorithm:

o Construct a bipartite graph G’ = (L, R, F); for each node v of G,
create /, € Land r, € R;

o For each edge (u,v) in G, create edge (¢, r,) in G';
@ Find the maximum matching M* in G'.

The smallest disjoint-path cover P* has |P*| = |V| — |M*|.

The proof will contain an algorithmic construction of P from M*.
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Disjoint-Paths Covers

Review of last lecture

@ Given a directed graph, a set P of simple paths is a path cover if each
node lies on at least one path in P. A path cover P is a disjoint-path
cover if each vertex lies on exactly one path in P.

@ The algorithm:

o Construct a bipartite graph G’ = (L, R, F); for each node v of G,
create /, € Land r, € R;
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Disjoint-Paths Covers

Review of last lecture

@ Given a directed graph, a set P of simple paths is a path cover if each
node lies on at least one path in P. A path cover P is a disjoint-path
cover if each vertex lies on exactly one path in P.
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Disjoint-Paths Covers

Review of last lecture

@ Given a directed graph, a set P of simple paths is a path cover if each
node lies on at least one path in P. A path cover P is a disjoint-path
cover if each vertex lies on exactly one path in P.

@ The algorithm:

o Construct a bipartite graph G’ = (L, R, F); for each node v of G,
create /, € Land r, € R;

o For each edge (u, v) in G, create edge (¢,,r,) in G’;

o Find the maximum matching M* in G'.

The smallest disjoint-path cover P* has |P*| = |V| — |M*|.
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Disjoint-Paths Covers

Proof of reduction

Claim
The smallest disjoint-path cover P* has |P*| = |V|— |[M|.
Proof.

@ Every matching M in G’ of size k corresponds to a disjoint-path
cover P in G of size |V| — k.
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Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P* has |P*| = |V|— |[M|.

Proof.

@ Every matching M in G’ of size k corresponds to a disjoint-path
cover P in G of size |V| — k.

o Construct a subgraph H of G with the same node set V: include the
edge (u,v) in Hif (¢,,r,) € M.

o Every vertex in H has at most one incoming edge and at most one
outgoing edge.

e Hence H is a collection of disjoint paths; this collection is a path cover
in G, and has k edges.

. SR ), e g



Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P* has |P*| = |V|— |[M|.

Proof.

@ Every matching M in G’ of size k corresponds to a disjoint-path
cover P in G of size |V| — k.

o Construct a subgraph H of G with the same node set V: include the
edge (u,v) in Hif (¢,,r,) € M.

o Every vertex in H has at most one incoming edge and at most one
outgoing edge.

e Hence H is a collection of disjoint paths; this collection is a path cover
in G, and has k edges.

o The number of paths in this path cover is |V| — k.

. SR ), e g



Disjoint-Paths Covers

Proof of reduction cont.

Claim

The smallest disjoint-path cover P* has |P*| = |V| — |[M*|.
Proof.

o Every disjoint-path cover P in G with k paths corresponds to a
matching in G’ of size |V/| — k.
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Proof of reduction cont.
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Disjoint-Paths Covers

Proof of reduction cont.

Claim

The smallest disjoint-path cover P* has |P*| = |V| — |[M*|.

Proof.
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Proof of reduction cont.

Claim

The smallest disjoint-path cover P* has |P*| = |V| — |[M*|.
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Disjoint-Paths Covers

Proof of reduction cont.

Claim

The smallest disjoint-path cover P* has |P*| = |V| — |[M*|.

Proof.

o Every disjoint-path cover P in G with k paths corresponds to a
matching in G’ of size |V/| — k.
o Construct a subset M of edges in G: include in M the edge (¢,,r,) if
(u,v) is in a path in P.
o Each node in G has at most one outgoing edge in P, so each node in L
is incident to at most one edge in M.

e Each node in G has at most one incoming edge in P, so each node
in R is incident to at most one edge in M.

e So M is a matching, and since P has |V/| — k edges, |[M| = |V| — k.
O

Question: Where did we use that G is acyclic?
]
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