Random Variables

Learning Goals

@ Random variables and their expectations

@ Expectation of some distributions (Indicator variables/Bernoulli,
binomial, geometric)

@ Linearity of expectations

@ Analyze two examples: guessing cards and coupon collection

@ Analyze probability of correctness of simple randomized algorithms, as

exemplified by MAX 3-SAT
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Random Variables

Random variables

@ Random variables map the sample space to real numbers X : Q — R.

e Examples in this class all have random variables taking nonnegative
integer values.
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Random Variables

Random variables

@ Random variables map the sample space to real numbers X : Q — R.

e Examples in this class all have random variables taking nonnegative
integer values.

@ Let X be a random variable on a probability space, for a number j,

PrX =j]=Pr[{weQ: X(w)=j}].
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Random Variables

Random variables

@ Random variables map the sample space to real numbers X : Q — R.

e Examples in this class all have random variables taking nonnegative
integer values.

@ Let X be a random variable on a probability space, for a number j,
PrX =j]=Pr[{weQ: X(w)=j}].

@ Example: Toss a dice, let X be the result (number of pips). Then
Vie{1,2,--- .6}, PriX =i =1/6.
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Random Variables

Random variables

@ Random variables map the sample space to real numbers X : Q — R.

e Examples in this class all have random variables taking nonnegative
integer values.

@ Let X be a random variable on a probability space, for a number j,
PrX =j]=Pr[{weQ: X(w)=j}].

@ Example: Toss a dice, let X be the result (number of pips). Then
Vie{1,2,--- .6}, PriX =i =1/6.
@ Example: For an event A, let X be 1 if A happens, and 0 if not. Then
Pr[X = 1] = Pr[A].
e X is called the indicator variable of A.

e A random variable that only takes values 0 or 1 is said to be drawn
from a Bernoulli distribution.
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Random Variables

Expectation of a random variable

@ The expectation of a random variable X is

E[X]:=) j-Prix=]j].
j=0
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Random Variables

Expectation of a random variable

@ The expectation of a random variable X is

E[X]:=) j-Prix=]j].
j=0

o Example: If X is the indicator variable of event A, then
E[X] = Pr[X =1] = Pr[A].
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Random Variables

Expectation of a random variable

@ The expectation of a random variable X is

o0

E[X]:=) j-Prix=]j].

j=0

o Example: If X is the indicator variable of event A, then
E[X] = Pr[X =1] = Pr[A].
o Example: If X is the result of a die toss, then

6
E[X]—éZi—;.
E[X?] =

Note E[X?] # (E[X])?.
— November 26, 2019
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Random Variables

Example

@ Example: Toss a coin that shows Heads with probability p. Keep
tossing until one sees a head. Let X be the number of tosses.
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Random Variables

Example

@ Example: Toss a coin that shows Heads with probability p. Keep
tossing until one sees a head. Let X be the number of tosses.

Pr(X =j]=p(1-py™"

oo

E[X]=) jPr[X=j]= ijl—p)’1 %ZL

J=1
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Random Variables

Example

@ Example: Toss a coin that shows Heads with probability p. Keep
tossing until one sees a head. Let X be the number of tosses.

Pr(X =j]=p(1-py™"

. 1 1
E[X]=) jPr[X=j]= ijl—p)’1 Pm=
j=1
For x < 1,
/
211 ij)/_ij_ LA W S
P I 52 A - (1—x)2
j=1 j=1
]
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Random Variables

Linearity of expectation

@ For random variables X and Y defined on the same probability space,
a new random variable X + Y is given by
(X 4+ Y)(w) = X(w) + Y(w) for any sample point w.
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Random Variables

Linearity of expectation

@ For random variables X and Y defined on the same probability space,
a new random variable X + Y is given by
(X 4+ Y)(w) = X(w) + Y(w) for any sample point w.

o Example: Toss two dices. Let X be the result of the first dice, and Y
that of the second. Then X + Y is the random variable for the sum of
the two results.
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Random Variables

Linearity of expectation

@ For random variables X and Y defined on the same probability space,
a new random variable X + Y is given by
(X + Y)(w) = X(w) + Y(w) for any sample point w.

o Example: Toss two dices. Let X be the result of the first dice, and Y
that of the second. Then X + Y is the random variable for the sum of
the two results.

For any collection of random variables Xi,--- , X, (defined on the same
probability space),

E [ZX] = XH:E[X,-].
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Random Variables

Linearity of expectation

@ For random variables X and Y defined on the same probability space,
a new random variable X + Y is given by
(X + Y)(w) = X(w) + Y(w) for any sample point w.

o Example: Toss two dices. Let X be the result of the first dice, and Y
that of the second. Then X + Y is the random variable for the sum of
the two results.

For any collection of random variables Xi,--- , X, (defined on the same
probability space),

E [ZX] = XH:E[X,-].
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Random Variables

Diversion: Independence among random variables

Definition

Two random variables are independent if for any i/, j, the events X =/ and
Y = j are independent.

Linearity of expectation does NOT need independence among the random
variables!
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Random Variables

Examples of linearity of expectations: Guessing cards

Shuffle a deck of n distinct cards, and reveal them one by one. Before each

revelation, make a uniformly random guess. How many guesses are correct
in expectation?
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Random Variables

Examples of linearity of expectations: Guessing cards

Shuffle a deck of n distinct cards, and reveal them one by one. Before each

revelation, make a uniformly random guess. How many guesses are correct
in expectation?

o Let X; be the indicator variable for the ith guess being correct, then
E[X;]]=1/n.
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Random Variables

Examples of linearity of expectations: Guessing cards

Shuffle a deck of n distinct cards, and reveal them one by one. Before each

revelation, make a uniformly random guess. How many guesses are correct
in expectation?

o Let X; be the indicator variable for the ith guess being correct, then
E[X;]]=1/n.

@ The total number of correct guesses is X .= Y "_; X;. So
ElX] =Y/ EX]=n ;=1
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Random Variables

Guessing cards (continued)

What if in the i"t" round, we guess a card uniformly at random among the
cards that haven’t shown up?
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Random Variables

Guessing cards (continued)

What if in the i"t" round, we guess a card uniformly at random among the
cards that haven’t shown up?

o Let Y; be the indicator variable for the ith guess being correct. Then

E[Y’] = nfhrl'
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Random Variables

Guessing cards (continued)

What if in the i"t" round, we guess a card uniformly at random among the
cards that haven’t shown up?

o Let Y; be the indicator variable for the ith guess being correct. Then

E[Y’] = nfhrl'

@ The total number of crrect guess is Y := . Yi. So

n n 1 n 1
E[Y]—;E[Yf]—z;n_l,_i_l—;izlnn.
1= 1=

=
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Random Variables

Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of n different
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?
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Random Variables

Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of n different
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?

o Let X; be the number of purchases we make to get the i coupon
after we've collected i — 1 coupons.
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Random Variables

Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of n different
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?

o Let X; be the number of purchases we make to get the i coupon
after we've collected i — 1 coupons.

@ There are n — i + 1 unseen coupons, and the probability we see one of
them in each purchase is 2=-tL.
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Random Variables

Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of n different
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?

o Let X; be the number of purchases we make to get the i coupon
after we've collected i — 1 coupons.

@ There are n — i + 1 unseen coupons, and the probability we see one of
them in each purchase is 2=-tL.

(] E[X,] =

i1 (from the earller example about tossing coins.)
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Random Variables

Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of n different
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?

o Let X; be the number of purchases we make to get the i coupon
after we've collected i — 1 coupons.

@ There are n — i + 1 unseen coupons, and the probability we see one of
them in each purchase is 2=-tL.

° E[Xi] = = l+1

@ Therefore the expected total number of purchases is

(from the earller example about tossing coins.)

n

n
n 1
E ﬁ:n‘ E f%nlnn.
n—.1 I
i=1 i=1
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Random Variables

Recipe for expectation calculation

@ Express the quantity we are interested in as a random variable

@ Express the random variable as a sum of random variables whose
expectations are easy to compute

@ Apply linearity of expectation (without worrying about independence)!

. ol o), 260 0 L)



Algorithmic application: MAX 3-SAT

@ MAX 3-SAT problem: Given a 3-SAT formula with n variables and m
clauses, find a truth assignment that satisfies as many clauses as
possible.
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Algorithmic application: MAX 3-SAT

@ MAX 3-SAT problem: Given a 3-SAT formula with n variables and m
clauses, find a truth assignment that satisfies as many clauses as

possible.
@ The problem is obviously NP-hard.
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Algorithmic application: MAX 3-SAT

@ MAX 3-SAT problem: Given a 3-SAT formula with n variables and m
clauses, find a truth assignment that satisfies as many clauses as

possible.
@ The problem is obviously NP-hard.

@ A randomzied algorithm: let each variable be TRUE with probability

1

5, independently.
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Algorithmic application: MAX 3-SAT

@ MAX 3-SAT problem: Given a 3-SAT formula with n variables and m
clauses, find a truth assignment that satisfies as many clauses as

possible.
@ The problem is obviously NP-hard.

@ A randomzied algorithm: let each variable be TRUE with probability

1

5, independently.

Under the uniformly random truth assignment, in expectation %m clauses
are satisfied.
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MAX 3-SAT Analysis

Under the uniformly random truth assignment, in expectation %m clauses
are satisfied.

Proof.

Let X; be the indicator variable for the ith clause to be satisfied, then the
number of satisfied clauses is >, X;.
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MAX 3-SAT Analysis

Under the uniformly random truth assignment, in expectation %m clauses
are satisfied.

Let X; be the indicator variable for the ith clause to be satisfied, then the
number of satisfied clauses is >, X;.

E

>

m
. 7
= Z E[X]= Z Pr [clause i is satisfied] = g™m
i i=1
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