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Approximation Algorithms: the concept

Ways to deal with NP-hard problems:

o Relatively fast exponential-time algorithms

o Typically with a running time that has an exponential dependence on
some parameter of the problem

o Practical when this parameter is small.

o Known in the literature as fixed-parmameter tractable algorithms.

@ Poly-time algorithms for NP-hard problems in special cases

@ In general we cannot hope to get optimal solutions in practically
acceptable time, and have to run heuristic algorithms.

@ But how do we justify heuristic algorithms? How do we compare one
heuristic with another?

@ One particular framework that inherits the worst-case analysis we have
done so far: show that an algorithm’s output on any instance is not
far from the optimal.
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Approximation Ratios

Measure the distance of an algorithm’s output from the optimal solution,
for optimization problems: look at the ratio between the two quantities.

Definition

For a maximization problem @ that asks to maximize the value of an
objective, an algorithm A is said to be an a-approximation algorithm if, on
any instance of Q, a- ALG > OPT, where ALG is the objective value of
A's output (on this instance), and OPT the value of the optimal solution.

In this definition, « > 1 is called the approximation ratio of A.
We also say A a-approximates the objective.

Independent set: pick an arbitrary node and stop. This is an
n-approximation.

(Asymptotically this is in fact the best possible unless P = NP. Showing

this is way beyond the scope of this class.)
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@ We have m machines and n tasks. Each task has a processing time t;.
We need to assign tasks to machines. The machines work in parallel.

@ The makespan is the amount of time that elapses from the start of
work to the end, i.e. till all machines finish the jobs assigned to them.

@ Formally, let S; be the set of jobs assigned to machine i, then the
makespan is max; ;g t;.

@ We need to assign jobs to the machines to minimize the makespan.

@ The problem is NP-hard. (Reduction?)
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Greedy algorithm

@ A natural algorithm: consider the jobs one by one in an arbitrary order.

o For task j, if jobs assigned to machine i take least time to process,
assign task j to machine J.

@ Running time obviously polynomial.

The above greey algorithm gives a 2-approximation to the makespan. \

The above analysis is tight: for any m, there is an instance with m
machines for which the approximation ratio of the greedy algorithm is at
least 2 — #
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General proof strategy:

@ In order to compare with the optimal, we need to know something
about the optimal solution.
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Proof of the approximation ratio

General proof strategy:
@ In order to compare with the optimal, we need to know something
about the optimal solution.
@ For NP-hard problems, we in general don't have a clean
characterization of the optimal solution.
@ But we can bound the optimal, either using given information or using
steps from the algorithm.

Let's lower bound OPT, the optimal makespan:

Proposition (Makespan no less than longest job)
OPT > max; t;.

Proposition (Makespan no less than average lengths)
For any subset S of jobs, OPT > # > jes bi-
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Final Analysis

o Let S; be the set of tasks assigned to machine i by our algorithm.

e If |S;| =1, its execution time is no more than OPT by Proposition 1.
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Final Analysis

Let S; be the set of tasks assigned to machine i by our algorithm.

If |S;| = 1, its execution time is no more than OPT by Proposition 1.

If |Si| > 2, suppose the last job added in is j:
o tj < OPT by Proposition 2.
® > kes—yjy tk was the smallest when task j was added.
o Then >, s tk was no more than the “machine average” over the
jobs that have been assigned when the algorithm considered task j.
o Hence Zkes,-—{j} t, < OPT.

Therefore >, s tx < 20PT for all i.
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Improving the Greedy Algorithm

@ In the tight example, the greedy algorithm did badly because it
doesn't foresee a large task coming at last.
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Improving the Greedy Algorithm

@ In the tight example, the greedy algorithm did badly because it
doesn't foresee a large task coming at last.

@ This motivates considering larger jobs first: run the greedy algorithm
just as before, but consider the tasks in decreasing lengths.

The improved greedy algorithm %-approximates the makespan.

Proof idea: Have a tighter bound on OPT: say t; > t, > ... > t,, then
OPT > 2tmt1-

March 6, 2019

~
~
~



	Introduction

