
Approximation Algorithms: the concept

Ways to deal with NP-hard problems:

Relatively fast exponential-time algorithms

Typically with a running time that has an exponential dependence on

some parameter of the problem

Practical when this parameter is small.

Known in the literature as �xed-parmameter tractable algorithms.

Poly-time algorithms for NP-hard problems in special cases

In general we cannot hope to get optimal solutions in practically

acceptable time, and have to run heuristic algorithms.

But how do we justify heuristic algorithms? How do we compare one

heuristic with another?

One particular framework that inherits the worst-case analysis we have

done so far: show that an algorithm's output on any instance is not

far from the optimal.
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Approximation Ratios

Measure the distance of an algorithm's output from the optimal solution,

for optimization problems: look at the ratio between the two quantities.

De�nition

For a maximization problem Q that asks to maximize the value of an

objective, an algorithm A is said to be an α-approximation algorithm if, on

any instance of Q, α · ALG ≥ OPT, where ALG is the objective value of

A's output (on this instance), and OPT the value of the optimal solution.

In this de�nition, α ≥ 1 is called the approximation ratio of A.
We also say A α-approximates the objective.

Example

Independent set: pick an arbitrary node and stop. This is an

n-approximation.

(Asymptotically this is in fact the best possible unless P = NP. Showing

this is way beyond the scope of this class.)
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First (serious) examle: Load balancing

We have m machines and n tasks. Each task has a processing time tj .
We need to assign tasks to machines. The machines work in parallel.

The makespan is the amount of time that elapses from the start of

work to the end, i.e. till all machines �nish the jobs assigned to them.

Formally, let Si be the set of jobs assigned to machine i , then the

makespan is maxi
∑

j∈Si tj .

We need to assign jobs to the machines to minimize the makespan.

The problem is NP-hard. (Reduction?)
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Greedy algorithm

A natural algorithm: consider the jobs one by one in an arbitrary order.

For task j , if jobs assigned to machine i take least time to process,

assign task j to machine i .

Running time obviously polynomial.

Theorem

The above greey algorithm gives a 2-approximation to the makespan.

The above analysis is tight: for any m, there is an instance with m
machines for which the approximation ratio of the greedy algorithm is at

least 2− 1

m .
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Proof of the approximation ratio

General proof strategy:

In order to compare with the optimal, we need to know something

about the optimal solution.

For NP-hard problems, we in general don't have a clean

characterization of the optimal solution.

But we can bound the optimal, either using given information or using

steps from the algorithm.

Let's lower bound OPT, the optimal makespan:

Proposition (Makespan no less than longest job)

OPT ≥ maxj tj .

Proposition (Makespan no less than average lengths)

For any subset S of jobs, OPT ≥ 1

m

∑
j∈S tj .
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Final Analysis

Let Si be the set of tasks assigned to machine i by our algorithm.

If |Si | = 1, its execution time is no more than OPT by Proposition 1.

If |Si | ≥ 2, suppose the last job added in is j :

tj ≤ OPT by Proposition 2.∑
k∈Si−{j} tk was the smallest when task j was added.

Then
∑

k∈Si−{j} tk was no more than the �machine average� over the

jobs that have been assigned when the algorithm considered task j .
Hence

∑
k∈Si−{j} tk ≤ OPT.

Therefore
∑

k∈Si tk ≤ 2OPT for all i .
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Improving the Greedy Algorithm

In the tight example, the greedy algorithm did badly because it

doesn't foresee a large task coming at last.

This motivates considering larger jobs �rst: run the greedy algorithm

just as before, but consider the tasks in decreasing lengths.

Theorem

The improved greedy algorithm 3

2
-approximates the makespan.

Proof idea: Have a tighter bound on OPT: say t1 ≥ t2 ≥ . . . ≥ tn, then
OPT ≥ 2tm+1.
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