
Coloring Circular Arcs

Input: We are given an (undirected) cycle with n nodes (and hence n
edges), m simple paths of it, and an integer k > 0.

Output: Whether it is possible to color the paths with k colors so that

no two paths with the same color share an edge.

The problem is NP-complete with a complicated reduction.

Naïve solution: enumerate all k colorings, running time O(km).

Goal: an algorithm with running time O(f (k) · poly(n,m)), where
f (k) is a function of k only. For small values of k this would scale

nicely with n and m.
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A simpler case: Paths on an interval

If the graph to start with is not a cycle but a path itself, the problem

becomes interval scheduling, and is readily solvable by a greedy

algorithm.

If an edge e is shared by d(e) paths, then one needs at least d(e)
colors.

A digression: it turns out that one needs exactly maxe d(e) colors.

This smells of a max-�ow min-cut phenomenon. In fact it is indeed a

consequence of the max-�ow min-cut theorem.

De�nition

A partially ordered set is a set S equipped with a binary relation �
satisfying:

1 Re�extive: ∀a ∈ S , a � a.

2 Transitivity: If a � b and b � c , then a � c .

3 Anti-symmetric: If a � b and b � a then a = b.
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Examples of partially ordered sets (posets)

If a � b but b � a, we write a ≺ b.

Examples of partially ordered sets:

Integers, rationals, reals... (These are totally ordered sets)

A set of sets (where � is inclusion ⊆)
A set of paper boxes, where � is �can be packed in�. Formally, let's

represent a box by its length, width and height: (a, b, c). Then
(a, b, c) � (a′, b′, c ′) if there is a permutation σ : {a, b, c} → {a, b, c}
such that σ(a) ≤ a′, σ(b) ≤ b′, σ(c) ≤ c ′.

Positive integers, where a � b if b can be divded by a.
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Dilworh's Theorem

De�nition

A chain in a partially ordered set is a set of elements a1, . . . , an such that

a1 ≺ . . . ≺ an. An antichain is a set of elements in a partially ordered set

that are mutually uncomparable.

Theorem (Dilworth's)

The minimum number of disjoint chains needed to cover a partially ordered

set is equal to the maximum cardinality of an antichain.

By �cover� we mean every element belongs to one of the chains.
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A simpler case: Paths on an interval

If the graph to start with is not a cycle but a path itself, the problem

becomes interval scheduling, and is readily solvable by a greedy

algorithm.

If an edge e is shared by d(e) paths, then one needs at least d(e)
colors.

A digression: it turns out that one needs exactly maxe d(e) colors.

Exercise: derive the above as a consequence of Dilworth's theorem.

However, the problem on the cycle is not as straightforward..

If for any e, d(e) > k , we can return Failure. But then what?

Let's try enumeration again, a little more cleverly.
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A �silly� enumerating algorithm

Think about the following enumerating algorithm. (We are going to

take �one step backward and then two steps forwards�.)

If a path Pj consists of edges ej1 , ej2 , . . . , ej` , create �segments�

sj ,1, . . . , sj ,`. So all the paths now consist of disjoint segments. If a

segment s corresponds to an edge e, we say s is on e.

Instead of coloring the paths, color the segments: each segment can
be colored in k ways. Enumerate all possible colorings. For each
coloring the segments, check whether:

1 All the segments belonging to the same path have the same color.
2 All the segments on the same edge have di�erent colors.

Running time: O(k
∑

j |Pj |).

Can we improve upon this? Keep in mind: anything with respect to k
is cheap; anything with respect to n or m is expensive.
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The algorithm

Observation 1: For each edge, there are at most k segments on it, and

there are at most k! possible colorings of them. (Remember, k! is
cheap!)

Let n(e) denote the edge after e clockwise, and p(e) the edge

before e clockwise.

Observation 2: Once we �x the coloring Φ of the segments on an

edge e, we can enumerate all colorings of the segments on n(e) that

are consistent with Φ. (Cheaply!)

Observation 2′: For a set C of colorings of the segments on an edge e,
we can enumerate all colorings of the segments on n(e) that are

consistent with some coloring in S . (Cheaply!)

Can we combine the two steps and propogate? Be careful with the

circularity of the graph!
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The Algorithm

Observation 3: Combining Observations 2 and 2′, we can �propogate�

a coloring:

Fix the coloring Φ of the segments on edge e, we can enumerate the
set C1 of all colorings of segments on n(e) that are consistent with Φ;
(Cheaply!)
Then we can enumerate the set C2 of all colorings of segments on
n(n(e)) that is consistent with some coloring in C1, and also consistent

with Φ; (Cheaply!)

We can go on this procedure: when we have Ci , propogate to Ci+1

that is all the colorings consistent with Φ and some coloring in Ci .

If we can do this until the edge p(e), we �nd a valid coloring. If we

fail at any step, there is no valid k-coloring.
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Analysis

Running time: each step was �cheap�, i.e., the number of steps is only

a function of k , and there are n steps. So total running time is

O(f (k)n).

The key to this algorithm: At each step, when we generate Ci+1, we

only need the information Ci and Φ (why?).

If we have to enumerate all the intermediate sets between Φ and Ci ,

the running time will explode.

This is the essence of dynamic programming: pass only the

information necessary for the next step of computation!
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