• We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.

- We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.
- The distances satisfy:

•
$$\forall s \in S, d(s,s) = 0;$$

- $\forall s, z \in S$, d(s, z) = d(z, s).
- $\forall s, z, h \in S$, $d(s, z) + d(z, h) \ge d(s, h)$.

- We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.
- The distances satisfy:

•
$$\forall s \in S$$
, $d(s,s) = 0$;

- $\forall s, z \in S, d(s, z) = d(z, s).$
- $\forall s, z, h \in S$, $d(s, z) + d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of *centers*, the distance from a site s to C is $d(s, C) := \min_{c \in C} d(s, c)$.

- We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.
- The distances satisfy:

•
$$\forall s \in S, d(s,s) = 0;$$

- $\forall s, z \in S, d(s, z) = d(z, s).$
- $\forall s, z, h \in S$, $d(s, z) + d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of *centers*, the distance from a site s to C is $d(s, C) := \min_{c \in C} d(s, c)$.
- The covering radius of C is $\max_{s \in S} d(s, C)$.

- We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.
- The distances satisfy:

•
$$\forall s \in S, d(s,s) = 0;$$

- $\forall s, z \in S, d(s, z) = d(z, s).$
- $\forall s, z, h \in S$, $d(s, z) + d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of *centers*, the distance from a site s to C is $d(s, C) := \min_{c \in C} d(s, c)$.
- The covering radius of C is $\max_{s \in S} d(s, C)$.
- We are asked to choose a set of k centers to minimize its covering radius.

- We are given a set S of n sites, an integer k, and also distances d(s, z) between every two sites s and z.
- The distances satisfy:

•
$$\forall s \in S$$
, $d(s,s) = 0$;

- $\forall s, z \in S, d(s, z) = d(z, s).$
- $\forall s, z, h \in S$, $d(s, z) + d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of *centers*, the distance from a site s to C is $d(s, C) := \min_{c \in C} d(s, c)$.
- The covering radius of C is $\max_{s \in S} d(s, C)$.
- We are asked to choose a set of k centers to minimize its covering radius.
- The problem is NP-hard. (Reduction?)

• A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?
- Both problems would be solved if we have a covering radius to shoot for: suppose we are interested in whether it is possible to choose k centers with covering radius ≤ r:

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?
- Both problems would be solved if we have a covering radius to shoot for: suppose we are interested in whether it is possible to choose k centers with covering radius ≤ r:
- The greedy procedure:
 - Itialize R ← S, C ← Ø. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?
- Both problems would be solved if we have a covering radius to shoot for: suppose we are interested in whether it is possible to choose k centers with covering radius ≤ r:
- The greedy procedure:
 - Itialize R ← S, C ← Ø. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
 - While R is nonempty and |C| < k, do: add an arbitrary site s ∈ R to C, remove from R any site within distance r to s.

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?
- Both problems would be solved if we have a covering radius to shoot for: suppose we are interested in whether it is possible to choose k centers with covering radius ≤ r:
- The greedy procedure:
 - Itialize R ← S, C ← Ø. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
 - While R is nonempty and |C| < k, do: add an arbitrary site s ∈ R to C, remove from R any site within distance r to s.
 - If we terminate with a non-empty R, declare failure; otherwise we find a set C, $|C| \le k$, with a covering radius $\le r$.

イロト イヨト イヨト

- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Problem with the approach: How do we compare "centrality" of two sites? And which sites should be considered "covered"?
- Both problems would be solved if we have a covering radius to shoot for: suppose we are interested in whether it is possible to choose k centers with covering radius ≤ r:
- The greedy procedure:
 - Itialize R ← S, C ← Ø. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
 - While R is nonempty and |C| < k, do: add an arbitrary site s ∈ R to C, remove from R any site within distance r to s.
 - If we terminate with a non-empty R, declare failure; otherwise we find a set C, |C| ≤ k, with a covering radius ≤ r.
- Note that the algorithm isn't fully "greedy": in each step s is chosen arbitrarily.

Theorem

If the above greedy algorithm fails, for any $C^* \subseteq S$ with $|C^*| \leq k$, the covering radius of C^* is at least r/2.

Theorem

If the above greedy algorithm fails, for any $C^* \subseteq S$ with $|C^*| \leq k$, the covering radius of C^* is at least r/2.

Proof.

Let C^* be any subset of S with covering radius $< \frac{r}{2}$, we show $|C^*| > k$.

Theorem

If the above greedy algorithm fails, for any $C^* \subseteq S$ with $|C^*| \leq k$, the covering radius of C^* is at least r/2.

Proof.

Let C^* be any subset of S with covering radius $< \frac{r}{2}$, we show $|C^*| > k$. Recall our algorithm terminated with a set of centers C, |C| = k, without covering all sites within distance r.

イロト イヨト イヨト

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) \coloneqq \{t \in S : d(s, t) \le \delta\}$.

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) := \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$.

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) := \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$. Key observation: $B(o_c, \frac{r}{2}) \subseteq B(c, r)$.

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) \coloneqq \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$. Key observation: $B(o_c, \frac{r}{2}) \subseteq B(c, r)$. Because $\forall s \in B(o_c, \frac{r}{2})$,

$$d(s,c)\leq d(s,o_c)+d(o_c,c)\leq \frac{r}{2}+\frac{r}{2}=r.$$

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) := \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$. Key observation: $B(o_c, \frac{r}{2}) \subseteq B(c, r)$. Because $\forall s \in B(o_c, \frac{r}{2})$,

$$d(s,c) \leq d(s,o_c) + d(o_c,c) \leq \frac{r}{2} + \frac{r}{2} = r.$$

Therefore, for any $c, c' \in C$, $o_c \neq o_{c'}$.

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) := \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$. Key observation: $B(o_c, \frac{r}{2}) \subseteq B(c, r)$. Because $\forall s \in B(o_c, \frac{r}{2})$,

$$d(s,c) \leq d(s,o_c) + d(o_c,c) \leq \frac{r}{2} + \frac{r}{2} = r.$$

Therefore, for any $c, c' \in C$, $o_c \neq o_{c'}$. Also, $\bigcup_{c \in C} B(o_c, \frac{r}{2}) \leq \bigcup_{c \in C} B(c, r) \subsetneq S$;

For any site s and radius δ , let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta) := \{t \in S : d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_c \in C^*$ that is in $B(c, \frac{r}{2})$. Key observation: $B(o_c, \frac{r}{2}) \subseteq B(c, r)$. Because $\forall s \in B(o_c, \frac{r}{2})$,

$$d(s,c) \leq d(s,o_c) + d(o_c,c) \leq \frac{r}{2} + \frac{r}{2} = r.$$

Therefore, for any $c, c' \in C$, $o_c \neq o_{c'}$. Also, $\bigcup_{c \in C} B(o_c, \frac{r}{2}) \leq \bigcup_{c \in C} B(c, r) \subsetneq S$; Now since $\bigcup_{o \in C^*} B(o, \frac{r}{2}) = S$ by assumption, $|C^*| > |C| = k$.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:
 - Pick an arbitrary site s and itinialize $C \leftarrow \{s\}$.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:
 - Pick an arbitrary site s and itinialize $C \leftarrow \{s\}$.
 - While |C| < k, do: pick a site c that maximizes d(c, C), add c to C.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:
 - Pick an arbitrary site s and itinialize $C \leftarrow \{s\}$.
 - While |C| < k, do: pick a site c that maximizes d(c, C), add c to C.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:
 - Pick an arbitrary site s and itinialize $C \leftarrow \{s\}$.
 - While |C| < k, do: pick a site c that maximizes d(c, C), add c to C.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius.

Reason: Let the optimal covering radius be r^* , then the covering radius of C can't be more than $2r^*$.

- Getting rid of the dependance on r: a binary search would do.
 - If the optimal solution has covering radius r^* , the algorithm must succeed when it tries any radius $r \ge 2r^*$.
 - This gives rise to a 2-approximation algorithm.
- For this problem, we can do something a bit more clever:
 - Pick an arbitrary site s and itinialize $C \leftarrow \{s\}$.
 - While |C| < k, do: pick a site c that maximizes d(c, C), add c to C.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius.

Reason: Let the optimal covering radius be r^* , then the covering radius of C can't be more than $2r^*$. Otherwise the algorithm is an implementation of the previous algorithm with a radius $r > 2r^*$, and yet does not cover all sites within distance r, contradicting the theorem.

Can we find an algorithm with better approximation ratio?

Image: A matrix

Can we find an algorithm with better approximation ratio? Answer: It's NP-hard to get $2 - \epsilon$ -approximation for any $\epsilon > 0$. (Think about the reduction from dominating set.)