
The center selection problem

We are given a set S of n sites, an integer k , and also distances

d(s, z) between every two sites s and z .

The distances satisfy:

∀s ∈ S , d(s, s) = 0;
∀s, z ∈ S , d(s, z) = d(z , s).
∀s, z , h ∈ S , d(s, z) + d(z , h) ≥ d(s, h).

For a set C ⊆ S of centers, the distance from a site s to C is

d(s,C ) := minc∈C d(s, c).

The covering radius of C is maxs∈S d(s,C ).

We are asked to choose a set of k centers to minimize its covering

radius.

The problem is NP-hard. (Reduction?)
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A Greedy Algorithm

A natural, intuitive greedy approach: �nd a site that is �central� to

many sites, set up a center there, remove all sites close to it (i.e.,

consider them as covered), and repeat the procedure.

Problem with the approach: How do we compare �centrality� of two

sites? And which sites should be considered �covered�?

Both problems would be solved if we have a covering radius to shoot

for: suppose we are interested in whether it is possible to choose k
centers with covering radius ≤ r :
The greedy procedure:

Itialize R ← S , C ← ∅. (R will be the set of sites �not covered� yet,
and C will be the set of centers we choose.)
While R is nonempty and |C | < k, do: add an arbitrary site s ∈ R
to C , remove from R any site within distance r to s.
If we terminate with a non-empty R, declare failure; otherwise we �nd
a set C , |C | ≤ k , with a covering radius ≤ r .

Note that the algorithm isn't fully �greedy�: in each step s is chosen

arbitrarily.
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Analysis

The terminating condition does not say that, if the algorithm fails, there is

no C , |C | ≤ k , with covering radius ≤ r . (Otherwise we can just try all r 's
and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any C ∗ ⊆ S with |C ∗| ≤ k , the
covering radius of C ∗ is at least r/2.

Proof.

Let C ∗ be any subset of S with covering radius < r
2
, we show |C ∗| > k .

Recall our algorithm terminated with a set of centers C , |C | = k , without
covering all sites within distance r .
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Proof (continued..)

For any site s and radius δ, let's denote by B(s, δ) the set of sites within

distance δ to s, i.e., B(s, δ) := {t ∈ S : d(s, t) ≤ δ}.

Consider any c ∈ C . There must be some oc ∈ C ∗ that is in B(c , r
2
).

Key observation: B(oc ,
r
2
) ⊆ B(c , r).

Because ∀s ∈ B(oc ,
r
2
),

d(s, c) ≤ d(s, oc) + d(oc , c) ≤
r

2
+

r

2
= r .

Therefore, for any c, c ′ ∈ C , oc 6= oc ′ .
Also, ∪c∈CB(oc , r2) ≤ ∪c∈CB(c , r) ( S ;
Now since ∪o∈C∗B(o, r2) = S by assumption, |C ∗| > |C | = k .
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The �nal algorithm

Getting rid of the dependance on r : a binary search would do.
If the optimal solution has covering radius r∗, the algorithm must
succeed when it tries any radius r ≥ 2r∗.

This gives rise to a 2-approximation algorithm.

For this problem, we can do something a bit more clever:

Pick an arbitrary site s and itinialize C ← {s}.
While |C | < k, do: pick a site c that maximizes d(c ,C ), add c to C .

Claim

This new algorithm gives a 2-approximation to the minimum covering

radius.

Reason: Let the optimal covering radius be r∗, then the covering radius

of C can't be more than 2r∗.
Otherwise the algorithm is an implementation of the previous algorithm

with a radius r > 2r∗, and yet does not cover all sites within distance r ,
contradicting the theorem.
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Discussion

Can we �nd an algorithm with better approximation ratio?

Answer: It's NP-hard to get 2− ε-approximation for any ε > 0. (Think

about the reduction from dominating set.)
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