Application of Max Flow 2: Directed Edge-Disjoint Paths

Definition
Two paths are edge-disjoint if they share no common edge. A set of paths
are edge-disjoint if any two are edge-disjoint.
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Problem statement:
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Let s be the source, t the sink; for all e € E, let c. be 1.
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Application of Max Flow 2: Directed Edge-Disjoint Paths

Definition
Two paths are edge-disjoint if they share no common edge. A set of paths
are edge-disjoint if any two are edge-disjoint.

Problem statement:
@ Input: a directed graph G = (V, E). Two nodes s,t € V.
@ Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Reduce it to a network flow problem.
Let s be the source, t the sink; for all e € E, let c. be 1.

The value of the maximum flow is equal to the maximum number of
edge-disjoint paths in G.

Running time: Ford-Fulkerson takes time O(mn).
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Proof of theorem

The value of the maximum flow is equal to the maximum number of
edge-disjoint paths in G.
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Proof of theorem
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Proof: Show a correspondance between integral-valued flows and sets of
edge-disjoint paths

o Edge-disjoint paths = flow (of the same value)

January 21, 2019 2/8

Further Applications of Max Flow



Proof of theorem

The value of the maximum flow is equal to the maximum number of

edge-disjoint paths in G.

Proof: Show a correspondance between integral-valued flows and sets of
edge-disjoint paths

o Edge-disjoint paths = flow (of the same value)

o Integral-valued flow f = |f| edge-disjoint paths

January 21, 2019 2/8

Further Applications of Max Flow



Proof of theorem

The value of the maximum flow is equal to the maximum number of
edge-disjoint paths in G.

Proof: Show a correspondance between integral-valued flows and sets of
edge-disjoint paths

o Edge-disjoint paths = flow (of the same value)

o Integral-valued flow f = |f| edge-disjoint paths

A flow is said to have no cycle if, for any cycle ey, ..., e, in the network,
there is an e; (1 <j < n) such that f(e;) = 0.

In any flow network, there is a max flow with no cycle.
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Extension: Undirected Edge-Disjoint Paths

@ Input: an undirected graph G = (V,E). Two nodes s, t € V.

@ OQutput: the maximum number of edge-disjoint paths from s to t.
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Extension: Undirected Edge-Disjoint Paths

@ Input: an undirected graph G = (V,E). Two nodes s, t € V.

@ OQutput: the maximum number of edge-disjoint paths from s to t.

Natural idea: Replace each edge {u, v} by a pair of edges (u, v) and (v, u),
and solve the problem for the directed graph.
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Extension: Undirected Edge-Disjoint Paths

@ Input: an undirected graph G = (V,E). Two nodes s, t € V.

@ OQutput: the maximum number of edge-disjoint paths from s to t.
Natural idea: Replace each edge {u, v} by a pair of edges (u, v) and (v, u),
and solve the problem for the directed graph.

Caveat: The two edges (v, v) and (v, u) may be used by two different
paths.
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Extension: Undirected Edge-Disjoint Paths

@ Input: an undirected graph G = (V,E). Two nodes s, t € V.

@ OQutput: the maximum number of edge-disjoint paths from s to t.

Natural idea: Replace each edge {u, v} by a pair of edges (u, v) and (v, u),
and solve the problem for the directed graph.

Caveat: The two edges (v, v) and (v, u) may be used by two different
paths.

Solution: Show that one can remove such cycles from a flow without
affecting the value of the flow.
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Application of Max Flow 3: Survey Design

Problem: We have a set U of customers and a set V of products; each
customer u € U has sampled a set S, C V of products. Is it possible to
conduct a survey so that each customer u responds on no more than k,
products in S, and each product is surveyed at least once?
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products in S, and each product is surveyed at least once?

Reduce to a flow problem, similar to bipartite matchings:

@ Set up a flow network, with source s, sink t, an edge from s to each
node in U, an edge from each node in V to t, and an edge between
(u,v) if v € 5,; all edges have capacity 1, except edge (s, u) having
capacity ky;
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Application of Max Flow 3: Survey Design

Problem: We have a set U of customers and a set V of products; each
customer u € U has sampled a set S, C V of products. Is it possible to
conduct a survey so that each customer u responds on no more than k,
products in S, and each product is surveyed at least once?

Reduce to a flow problem, similar to bipartite matchings:

@ Set up a flow network, with source s, sink t, an edge from s to each
node in U, an edge from each node in V to t, and an edge between
(u,v) if v € 5,; all edges have capacity 1, except edge (s, u) having
capacity ky;

@ The required study is possible if and only if the flow network has a
flow of value |V/|.

But what if we'd like to require more than one survey on each product?
Say for product v € V we need at least L, and at most M, surveys?
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(Added slide thanks to the discussion in class)

What if we'd like to require more than one survey on each product? Say for
product v € V we need at least L, and at most M, surveys?

@ Solution 1: set the capacity on each edge (v, t) to be L,, and observe
that M, is of no use.

@ Solution 2: for each product v, set up L, nodes, each having an edge
going to t with capacity 1, and each having incoming edge (u, v) for
every u such that v € .

What if we'd like to set up lower bounds as well for the customers? Say for
product v € V we need at least L, and at most M, surveys, and customer
u € U should do at least L, and at most M, surveys.
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Extension of flow networks: Circulation with demands

@ Input: a directed graph G = (V/, E); each node v € V has a demand
d, € R; each edge e € E has a capacity ¢c. > 0.
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Extension of flow networks: Circulation with demands

@ Input: a directed graph G = (V/, E); each node v € V has a demand
d, € R; each edge e € E has a capacity ¢c. > 0.
e Output: a circulation if it exists. A circulation is a mapping
f . E — R, satisfying
e (capacity condition) Ve € E, 0 < f(e) < ce;
[}

(demand condition) Yv e V, 3", f(e)—> f(e) =d,.

e out of v
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Extension of flow networks: Circulation with demands

@ Input: a directed graph G = (V/, E); each node v € V has a demand
d, € R; each edge e € E has a capacity ¢c. > 0.
e Output: a circulation if it exists. A circulation is a mapping
f . E — R, satisfying
e (capacity condition) Ve € E, 0 < f(e) < ce;
o (demand condition) Vv € V, >~ ... f(e) =
@ Solution: Reduce to a flow problem!
o Construct flow network G’: add a source s and a sink t; for each
v € V with d, <0, add an edge (s, v) with capacity d,; for each
v € V with d, > 0, add an edge (v, t) with capacity |d,|.

o Observe that a circulation may exist only if > _,, d, = 0.

f(e) =d,.

e out of v

A circulation exists in G if and only if a flow with value 1" |d,| exists
in G'. (Note: 3" |dy| is just 3,4 oo dv.)
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Extension: circulation with demands and lower bounds

@ Input: a directed graph G = (V/, E); each node v € V has a demand
d, € R; each edge e € E has a lower bound {, > 0 and a capacity
Ce > Le.
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Extension: circulation with demands and lower bounds

@ Input: a directed graph G = (V/, E); each node v € V has a demand
d, € R; each edge e € E has a lower bound {, > 0 and a capacity
Ce > Le.

@ Output: a circulation if it exists. A circulation is a mapping
f . E — R, satisfying

o (capacity condition) Ve € E, £, < f(e) < ce;
o (demand condition) Vv € V, >~ . f(€) = > o ourof v F(€) = du.
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Solution to circulation with lower bounds and demands

o Idea (slick!): reduce the problem to circulation with only demands, by
“raising horizons for the edges”:
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Solution to circulation with lower bounds and demands

o Idea (slick!): reduce the problem to circulation with only demands, by
“raising horizons for the edges”:
o If we start with f(e) = £, for all e (and never allow them to drop
below), what happens to the demands?
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Solution to circulation with lower bounds and demands

o Idea (slick!): reduce the problem to circulation with only demands, by
“raising horizons for the edges”:
o If we start with f(e) = £, for all e (and never allow them to drop
below), what happens to the demands?
o Let d) bed, — 3 _inoylet Docoutof v Lei let i be ce — L.
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Solution to circulation with lower bounds and demands

o Idea (slick!): reduce the problem to circulation with only demands, by
“raising horizons for the edges”:
o If we start with f(e) = £ for all e (and never allow them to drop
below), what happens to the demands?
o Let d) bed, — 3 _inoylet Docoutof v Lei let i be ce — L.
o Solve the circulation problem with d’ and ¢’ without lower bounds!
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Solution to circulation with lower bounds and demands

o Idea (slick!): reduce the problem to circulation with only demands, by
“raising horizons for the edges”:

o If we start with f(e) = £, for all e (and never allow them to drop
below), what happens to the demands?

o Let d) bed, — 3 _inoylet Docoutof v Lei let i be ce — L.

o Solve the circulation problem with d’ and ¢’ without lower bounds!

Exercise: Reduce the survey design problem to circulation with demands
and lower bounds (or read the reduction in textbook).
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