Application of Max Flow 2: Directed Edge-Disjoint Paths

Definition

Two paths are *edge-disjoint* if they share no common edge. A set of paths are edge-disjoint if any two are edge-disjoint.

Application of Max Flow 2: Directed Edge-Disjoint Paths

Definition

Two paths are *edge-disjoint* if they share no common edge. A set of paths are edge-disjoint if any two are edge-disjoint.

Problem statement:

- Input: a directed graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

Application of Max Flow 2: Directed Edge-Disjoint Paths

Definition

Two paths are *edge-disjoint* if they share no common edge. A set of paths are edge-disjoint if any two are edge-disjoint.

Problem statement:

- Input: a directed graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t. Natural idea: Reduce it to a network flow problem. Let s be the source, t the sink; for all $e \in E$, let c_e be 1.

Definition

Two paths are *edge-disjoint* if they share no common edge. A set of paths are edge-disjoint if any two are edge-disjoint.

Problem statement:

- Input: a directed graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Reduce it to a network flow problem. Let s be the source, t the sink; for all $e \in E$, let c_e be 1.

Theorem

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

Definition

Two paths are *edge-disjoint* if they share no common edge. A set of paths are edge-disjoint if any two are edge-disjoint.

Problem statement:

- Input: a directed graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Reduce it to a network flow problem. Let s be the source, t the sink; for all $e \in E$, let c_e be 1.

Theorem

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

Running time: Ford-Fulkerson takes time O(mn).

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

Proof: Show a correspondance between integral-valued flows and sets of edge-disjoint paths

• Edge-disjoint paths \Rightarrow flow (of the same value)

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

Proof: Show a correspondance between integral-valued flows and sets of edge-disjoint paths

- Edge-disjoint paths \Rightarrow flow (of the same value)
- Integral-valued flow $f \Rightarrow |f|$ edge-disjoint paths

The value of the maximum flow is equal to the maximum number of edge-disjoint paths in G.

Proof: Show a correspondance between integral-valued flows and sets of edge-disjoint paths

- Edge-disjoint paths \Rightarrow flow (of the same value)
- Integral-valued flow $f \Rightarrow |f|$ edge-disjoint paths

A flow is said to have no cycle if, for any cycle e_1, \ldots, e_k in the network, there is an e_j $(1 \le j \le n)$ such that $f(e_j) = 0$.

Lemma

In any flow network, there is a max flow with no cycle.

- Input: an undirected graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

- Input: an undirected graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.
- Natural idea: Replace each edge $\{u, v\}$ by a pair of edges (u, v) and (v, u), and solve the problem for the directed graph.

- Input: an undirected graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Replace each edge $\{u, v\}$ by a pair of edges (u, v) and (v, u), and solve the problem for the directed graph. Caveat: The two edges (u, v) and (v, u) may be used by two different paths.

- Input: an undirected graph G = (V, E). Two nodes $s, t \in V$.
- Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Replace each edge $\{u, v\}$ by a pair of edges (u, v) and (v, u), and solve the problem for the directed graph.

Caveat: The two edges (u, v) and (v, u) may be used by two different paths.

Solution: Show that one can remove such cycles from a flow without affecting the value of the flow.

Problem: We have a set U of customers and a set V of products; each customer $u \in U$ has sampled a set $S_u \subseteq V$ of products. Is it possible to conduct a survey so that each customer u responds on no more than k_u products in S_u and each product is surveyed at least once?

Problem: We have a set U of customers and a set V of products; each customer $u \in U$ has sampled a set $S_u \subseteq V$ of products. Is it possible to conduct a survey so that each customer u responds on no more than k_u products in S_u and each product is surveyed at least once? Reduce to a flow problem, similar to bipartite matchings:

 Set up a flow network, with source s, sink t, an edge from s to each node in U, an edge from each node in V to t, and an edge between (u, v) if v ∈ S_u; all edges have capacity 1, except edge (s, u) having capacity k_u; Problem: We have a set U of customers and a set V of products; each customer $u \in U$ has sampled a set $S_u \subseteq V$ of products. Is it possible to conduct a survey so that each customer u responds on no more than k_u products in S_u and each product is surveyed at least once? Reduce to a flow problem, similar to bipartite matchings:

- Set up a flow network, with source s, sink t, an edge from s to each node in U, an edge from each node in V to t, and an edge between (u, v) if v ∈ S_u; all edges have capacity 1, except edge (s, u) having capacity k_u;
- The required study is possible if and only if the flow network has a flow of value |V|.

Problem: We have a set U of customers and a set V of products; each customer $u \in U$ has sampled a set $S_u \subseteq V$ of products. Is it possible to conduct a survey so that each customer u responds on no more than k_u products in S_u and each product is surveyed at least once? Reduce to a flow problem, similar to bipartite matchings:

- Set up a flow network, with source s, sink t, an edge from s to each node in U, an edge from each node in V to t, and an edge between (u, v) if v ∈ S_u; all edges have capacity 1, except edge (s, u) having capacity k_u;
- The required study is possible if and only if the flow network has a flow of value |V|.

But what if we'd like to require more than one survey on each product? Say for product $v \in V$ we need at least L_v and at most M_v surveys? What if we'd like to require more than one survey on each product? Say for product $v \in V$ we need at least L_v and at most M_v surveys?

- Solution 1: set the capacity on each edge (v, t) to be L_v , and observe that M_v is of no use.
- Solution 2: for each product v, set up L_v nodes, each having an edge going to t with capacity 1, and each having incoming edge (u, v) for every u such that $v \in S_u$.

What if we'd like to set up lower bounds as well for the customers? Say for product $v \in V$ we need at least L_v and at most M_v surveys, and customer $u \in U$ should do at least L_u and at most M_u surveys.

Input: a directed graph G = (V, E); each node v ∈ V has a demand d_v ∈ ℝ; each edge e ∈ E has a capacity c_e ≥ 0.

- Input: a directed graph G = (V, E); each node v ∈ V has a demand d_v ∈ ℝ; each edge e ∈ E has a capacity c_e ≥ 0.
- Output: a *circulation* if it exists. A circulation is a mapping $f: E \rightarrow R_+$ satisfying
 - (capacity condition) $\forall e \in E$, $0 \leq f(e) \leq c_e$;
 - (demand condition) $\forall v \in V$, $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d_v$.

- Input: a directed graph G = (V, E); each node v ∈ V has a demand d_v ∈ ℝ; each edge e ∈ E has a capacity c_e ≥ 0.
- Output: a *circulation* if it exists. A circulation is a mapping $f: E \rightarrow R_+$ satisfying
 - (capacity condition) $\forall e \in E$, $0 \leq f(e) \leq c_e$;
 - (demand condition) $\forall v \in V$, $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d_v$.
- Solution: Reduce to a flow problem!
 - Construct flow network G': add a source s and a sink t; for each v ∈ V with d_v < 0, add an edge (s, v) with capacity d_v; for each v ∈ V with d_v > 0, add an edge (v, t) with capacity |d_v|.

- Input: a directed graph G = (V, E); each node v ∈ V has a demand d_v ∈ ℝ; each edge e ∈ E has a capacity c_e ≥ 0.
- Output: a *circulation* if it exists. A circulation is a mapping $f: E \rightarrow R_+$ satisfying
 - (capacity condition) $\forall e \in E$, $0 \leq f(e) \leq c_e$;
 - (demand condition) $\forall v \in V$, $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d_v$.
- Solution: Reduce to a flow problem!
 - Construct flow network G': add a source s and a sink t; for each v ∈ V with d_v < 0, add an edge (s, v) with capacity d_v; for each v ∈ V with d_v > 0, add an edge (v, t) with capacity |d_v|.
 - Observe that a circulation may exist only if $\sum_{v \in V} d_v = 0$.

- Input: a directed graph G = (V, E); each node v ∈ V has a demand d_v ∈ ℝ; each edge e ∈ E has a capacity c_e ≥ 0.
- Output: a *circulation* if it exists. A circulation is a mapping $f: E \rightarrow R_+$ satisfying
 - (capacity condition) $\forall e \in E$, $0 \leq f(e) \leq c_e$;
 - (demand condition) $\forall v \in V$, $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d_v$.
- Solution: Reduce to a flow problem!
 - Construct flow network G': add a source s and a sink t; for each v ∈ V with d_v < 0, add an edge (s, v) with capacity d_v; for each v ∈ V with d_v > 0, add an edge (v, t) with capacity |d_v|.
 - Observe that a circulation may exist only if $\sum_{v \in V} d_v = 0$.

Claim

A circulation exists in G if and only if a flow with value $\frac{1}{2} \sum_{v} |d_{v}|$ exists in G'. (Note: $\frac{1}{2} \sum_{v} |d_{v}|$ is just $\sum_{v:d_{v}>0} d_{v}$.)

Image: A marked and A marked

Extension: circulation with demands and lower bounds

• Input: a directed graph G = (V, E); each node $v \in V$ has a demand $d_v \in \mathbb{R}$; each edge $e \in E$ has a lower bound $\ell_e \ge 0$ and a capacity $c_e \ge \ell_e$.

- Input: a directed graph G = (V, E); each node $v \in V$ has a *demand* $d_v \in \mathbb{R}$; each edge $e \in E$ has a *lower bound* $\ell_e \ge 0$ and a capacity $c_e \ge \ell_e$.
- Output: a circulation if it exists. A circulation is a mapping $f: E \rightarrow R_+$ satisfying
 - (capacity condition) $\forall e \in E$, $\ell_e \leq f(e) \leq c_e$;
 - (demand condition) $\forall v \in V$, $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d_v$.

• Idea (slick!): reduce the problem to circulation with only demands, by "raising horizons for the edges":

- Idea (slick!): reduce the problem to circulation with only demands, by "raising horizons for the edges":
 - If we start with $f(e) = \ell_e$ for all e (and never allow them to drop below), what happens to the demands?

- Idea (slick!): reduce the problem to circulation with only demands, by "raising horizons for the edges":
 - If we start with $f(e) = \ell_e$ for all e (and never allow them to drop below), what happens to the demands?

• Let
$$d'_v$$
 be $d_v - \sum_{e \text{ into } v} \ell_e + \sum_{e \text{ out of } v} \ell_e$; let c'_e be $c_e - \ell_e$.

- Idea (slick!): reduce the problem to circulation with only demands, by "raising horizons for the edges":
 - If we start with $f(e) = \ell_e$ for all e (and never allow them to drop below), what happens to the demands?
 - Let d'_v be $d_v \sum_{e \text{ into } v} \ell_e + \sum_{e \text{ out of } v} \ell_e$, let c'_e be $c_e \ell_e$.
 - Solve the circulation problem with d' and c' without lower bounds!

- Idea (slick!): reduce the problem to circulation with only demands, by "raising horizons for the edges":
 - If we start with $f(e) = \ell_e$ for all e (and never allow them to drop below), what happens to the demands?
 - Let d'_v be $d_v \sum_{e \text{ into } v} \ell_e + \sum_{e \text{ out of } v} \ell_e$, let c'_e be $c_e \ell_e$.
 - Solve the circulation problem with d' and c' without lower bounds!

Exercise: Reduce the survey design problem to circulation with demands and lower bounds (or read the reduction in textbook).