
Application of Max Flow 2: Directed Edge-Disjoint Paths

De�nition

Two paths are edge-disjoint if they share no common edge. A set of paths

are edge-disjoint if any two are edge-disjoint.

Problem statement:

Input: a directed graph G = (V ,E ). Two nodes s, t ∈ V .

Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Reduce it to a network �ow problem.

Let s be the source, t the sink; for all e ∈ E , let ce be 1.

Theorem

The value of the maximum �ow is equal to the maximum number of

edge-disjoint paths in G .

Running time: Ford-Fulkerson takes time O(mn).
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Proof of theorem

Theorem

The value of the maximum �ow is equal to the maximum number of

edge-disjoint paths in G .

Proof: Show a correspondance between integral-valued �ows and sets of

edge-disjoint paths

Edge-disjoint paths ⇒ �ow (of the same value)

Integral-valued �ow f ⇒ |f | edge-disjoint paths

A �ow is said to have no cycle if, for any cycle e1, . . . , ek in the network,

there is an ej (1 ≤ j ≤ n) such that f (ej) = 0.

Lemma

In any �ow network, there is a max �ow with no cycle.
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Extension: Undirected Edge-Disjoint Paths

Input: an undirected graph G = (V ,E ). Two nodes s, t ∈ V .

Output: the maximum number of edge-disjoint paths from s to t.

Natural idea: Replace each edge {u, v} by a pair of edges (u, v) and (v , u),
and solve the problem for the directed graph.

Caveat: The two edges (u, v) and (v , u) may be used by two di�erent

paths.

Solution: Show that one can remove such cycles from a �ow without

a�ecting the value of the �ow.
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Application of Max Flow 3: Survey Design

Problem: We have a set U of customers and a set V of products; each

customer u ∈ U has sampled a set Su ⊆ V of products. Is it possible to

conduct a survey so that each customer u responds on no more than ku
products in Su and each product is surveyed at least once?

Reduce to a �ow problem, similar to bipartite matchings:

Set up a �ow network, with source s, sink t, an edge from s to each

node in U, an edge from each node in V to t, and an edge between

(u, v) if v ∈ Su; all edges have capacity 1, except edge (s, u) having

capacity ku;

The required study is possible if and only if the �ow network has a

�ow of value |V |.

But what if we'd like to require more than one survey on each product?

Say for product v ∈ V we need at least Lv and at most Mv surveys?
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(Added slide thanks to the discussion in class)

What if we'd like to require more than one survey on each product? Say for

product v ∈ V we need at least Lv and at most Mv surveys?

Solution 1: set the capacity on each edge (v , t) to be Lv , and observe

that Mv is of no use.

Solution 2: for each product v , set up Lv nodes, each having an edge

going to t with capacity 1, and each having incoming edge (u, v) for

every u such that v ∈ Su.

What if we'd like to set up lower bounds as well for the customers? Say for

product v ∈ V we need at least Lv and at most Mv surveys, and customer

u ∈ U should do at least Lu and at most Mu surveys.
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Extension of �ow networks: Circulation with demands

Input: a directed graph G = (V ,E ); each node v ∈ V has a demand

dv ∈ R; each edge e ∈ E has a capacity ce ≥ 0.

Output: a circulation if it exists. A circulation is a mapping
f : E → R+ satisfying

(capacity condition) ∀e ∈ E , 0 ≤ f (e) ≤ ce ;
(demand condition) ∀v ∈ V ,

∑
e into v f (e)−

∑
e out of v f (e) = dv .

Solution: Reduce to a �ow problem!

Construct �ow network G ′: add a source s and a sink t; for each
v ∈ V with dv < 0, add an edge (s, v) with capacity dv ; for each
v ∈ V with dv > 0, add an edge (v , t) with capacity |dv |.
Observe that a circulation may exist only if

∑
v∈V dv = 0.

Claim

A circulation exists in G if and only if a �ow with value 1

2

∑
v |dv | exists

in G ′. (Note: 1

2

∑
v |dv | is just

∑
v :dv>0

dv .)
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Extension: circulation with demands and lower bounds

Input: a directed graph G = (V ,E ); each node v ∈ V has a demand

dv ∈ R; each edge e ∈ E has a lower bound `e ≥ 0 and a capacity

ce ≥ `e .

Output: a circulation if it exists. A circulation is a mapping
f : E → R+ satisfying

(capacity condition) ∀e ∈ E , `e ≤ f (e) ≤ ce ;
(demand condition) ∀v ∈ V ,

∑
e into v f (e)−

∑
e out of v f (e) = dv .
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Solution to circulation with lower bounds and demands

Idea (slick!): reduce the problem to circulation with only demands, by
�raising horizons for the edges�:

If we start with f (e) = `e for all e (and never allow them to drop
below), what happens to the demands?
Let d ′

v be dv −
∑

e into v `e +
∑

e out of v `e ; let c
′
e be ce − `e .

Solve the circulation problem with d ′ and c ′ without lower bounds!

Exercise: Reduce the survey design problem to circulation with demands

and lower bounds (or read the reduction in textbook).
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