
Learning Goals

(Reviewing) basics of probabilities: events, independence, union

bound.

Contention resolution with random access, and analysis of its e�ciency

Some facts about repeated tosses of a biased random coin

March 26, 2019 1 / 7



Contention Resolution

Set up: one server, n tasks, discretized time steps

At each time step, tasks may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.

March 26, 2019 2 / 7



Contention Resolution

Set up: one server, n tasks, discretized time steps

At each time step, tasks may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.

March 26, 2019 2 / 7



Contention Resolution

Set up: one server, n tasks, discretized time steps

At each time step, tasks may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.

March 26, 2019 2 / 7



Contention Resolution

Set up: one server, n tasks, discretized time steps

At each time step, tasks may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.

March 26, 2019 2 / 7



Contention Resolution

Set up: one server, n tasks, discretized time steps

At each time step, tasks may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.

March 26, 2019 2 / 7



Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.

Let S [i , t] denote the event that task i sends a request at time t and

gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

Recall: Two events A and B are independent if

Pr[A ∩ B] = Pr[A] · Pr[B].

To maximize Pr[S [i , t]], set p = 1/n.

March 26, 2019 3 / 7



Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.

Let S [i , t] denote the event that task i sends a request at time t and

gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

Recall: Two events A and B are independent if

Pr[A ∩ B] = Pr[A] · Pr[B].

To maximize Pr[S [i , t]], set p = 1/n.

March 26, 2019 3 / 7



Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.

Let S [i , t] denote the event that task i sends a request at time t and

gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

Recall: Two events A and B are independent if

Pr[A ∩ B] = Pr[A] · Pr[B].

To maximize Pr[S [i , t]], set p = 1/n.

March 26, 2019 3 / 7



Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.

Let S [i , t] denote the event that task i sends a request at time t and

gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

Recall: Two events A and B are independent if

Pr[A ∩ B] = Pr[A] · Pr[B].

To maximize Pr[S [i , t]], set p = 1/n.

March 26, 2019 3 / 7



Rate of success at each time step

We set p to maximize Pr[S [i , t]] to 1

n (1− 1

n )n−1. How good is this?

Proposition

1 The function (1− 1

n )n converges monotonically from 1

4
up to 1

e as n
increases from 2.

2 The function (1− 1

n )n−1 converges monotonically from 1

2
down to 1

e
as n increases from 2.

So 1/(en) ≤ Pr[S [i , t]] ≤ 1/(2n). Therefore Pr[S [i , t]] is asymtotically

Θ(1/n).

March 26, 2019 4 / 7



Rate of success at each time step

We set p to maximize Pr[S [i , t]] to 1

n (1− 1

n )n−1. How good is this?

Proposition

1 The function (1− 1

n )n converges monotonically from 1

4
up to 1

e as n
increases from 2.

2 The function (1− 1

n )n−1 converges monotonically from 1

2
down to 1

e
as n increases from 2.

So 1/(en) ≤ Pr[S [i , t]] ≤ 1/(2n). Therefore Pr[S [i , t]] is asymtotically

Θ(1/n).

March 26, 2019 4 / 7



Rate of success at each time step

We set p to maximize Pr[S [i , t]] to 1

n (1− 1

n )n−1. How good is this?

Proposition

1 The function (1− 1

n )n converges monotonically from 1

4
up to 1

e as n
increases from 2.

2 The function (1− 1

n )n−1 converges monotonically from 1

2
down to 1

e
as n increases from 2.

So 1/(en) ≤ Pr[S [i , t]] ≤ 1/(2n). Therefore Pr[S [i , t]] is asymtotically

Θ(1/n).

March 26, 2019 4 / 7



Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week
Give a range [a, b], and show that X is in [a, b] with �high probability�:
today
Remark: often, in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t
.

March 26, 2019 5 / 7



Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week

Give a range [a, b], and show that X is in [a, b] with �high probability�:
today
Remark: often, in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t
.

March 26, 2019 5 / 7



Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week
Give a range [a, b], and show that X is in [a, b] with �high probability�:
today

Remark: often, in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t
.

March 26, 2019 5 / 7



Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week
Give a range [a, b], and show that X is in [a, b] with �high probability�:
today
Remark: often, in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t
.

March 26, 2019 5 / 7



Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week
Give a range [a, b], and show that X is in [a, b] with �high probability�:
today
Remark: often, in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t
.

March 26, 2019 5 / 7



Waiting time for a particular task to succeed

Probability that a task fails in the �rst t steps: [1− 1

n (1− 1

n )n−1]t .

We'd like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for

the �rst t steps is at most n−c , which vanishes as n grows.

Big picture (very useful high level intuition): if we have a biased coin
that gives Heads with probability 1/k :

In about k independent tosses, one �expects� to see a Heads;
However, with constant probability, a Heads doesn't show in k tosses;
But if one tosses the coin θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.

March 26, 2019 6 / 7



Waiting time for a particular task to succeed

Probability that a task fails in the �rst t steps: [1− 1

n (1− 1

n )n−1]t .

We'd like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for

the �rst t steps is at most n−c , which vanishes as n grows.

Big picture (very useful high level intuition): if we have a biased coin
that gives Heads with probability 1/k :

In about k independent tosses, one �expects� to see a Heads;
However, with constant probability, a Heads doesn't show in k tosses;
But if one tosses the coin θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.

March 26, 2019 6 / 7



Waiting time for a particular task to succeed

Probability that a task fails in the �rst t steps: [1− 1

n (1− 1

n )n−1]t .

We'd like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for

the �rst t steps is at most n−c , which vanishes as n grows.

Big picture (very useful high level intuition): if we have a biased coin
that gives Heads with probability 1/k :

In about k independent tosses, one �expects� to see a Heads;
However, with constant probability, a Heads doesn't show in k tosses;
But if one tosses the coin θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.

March 26, 2019 6 / 7



Waiting time for a particular task to succeed

Probability that a task fails in the �rst t steps: [1− 1

n (1− 1

n )n−1]t .

We'd like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for

the �rst t steps is at most n−c , which vanishes as n grows.

Big picture (very useful high level intuition): if we have a biased coin
that gives Heads with probability 1/k :

In about k independent tosses, one �expects� to see a Heads;
However, with constant probability, a Heads doesn't show in k tosses;
But if one tosses the coin θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.

March 26, 2019 6 / 7



Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the �rst t steps, we

have shown Pr[F [i , t]] ≤ e−t/en = n−c for t = den · c ln ne.

The event that some task keeps failing in the �rst t steps is then

∪ni=1
F [i , t].

Proposition (Union Bound)

For any events E1, · · · ,Em, Pr[∪mi=1
Ei ] ≤

∑m
i=1

Pr[Ei ].

Pr [∪ni=1
F [i , t]] ≤

n∑
i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1

n .

March 26, 2019 7 / 7



Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the �rst t steps, we

have shown Pr[F [i , t]] ≤ e−t/en = n−c for t = den · c ln ne.
The event that some task keeps failing in the �rst t steps is then

∪ni=1
F [i , t].

Proposition (Union Bound)

For any events E1, · · · ,Em, Pr[∪mi=1
Ei ] ≤

∑m
i=1

Pr[Ei ].

Pr [∪ni=1
F [i , t]] ≤

n∑
i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1

n .

March 26, 2019 7 / 7



Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the �rst t steps, we

have shown Pr[F [i , t]] ≤ e−t/en = n−c for t = den · c ln ne.
The event that some task keeps failing in the �rst t steps is then

∪ni=1
F [i , t].

Proposition (Union Bound)

For any events E1, · · · ,Em, Pr[∪mi=1
Ei ] ≤

∑m
i=1

Pr[Ei ].

Pr [∪ni=1
F [i , t]] ≤

n∑
i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1

n .

March 26, 2019 7 / 7



Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the �rst t steps, we

have shown Pr[F [i , t]] ≤ e−t/en = n−c for t = den · c ln ne.
The event that some task keeps failing in the �rst t steps is then

∪ni=1
F [i , t].

Proposition (Union Bound)

For any events E1, · · · ,Em, Pr[∪mi=1
Ei ] ≤

∑m
i=1

Pr[Ei ].

Pr [∪ni=1
F [i , t]] ≤

n∑
i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1

n .

March 26, 2019 7 / 7


	Arbitrarily Good Approximation Algorithms — Knapsack 

