Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.

Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.
- Each pixel i has a likelihood a_{i} for being in the foreground and a likelihood b_{i} for being in the background.

Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.
- Each pixel i has a likelihood a_{i} for being in the foreground and a likelihood b_{i} for being in the background.
- Each pair of adjacent pixels (i, j) has a separation penalty $p_{i j}$ for being separated.

Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.
- Each pixel i has a likelihood a_{i} for being in the foreground and a likelihood b_{i} for being in the background.
- Each pair of adjacent pixels (i, j) has a separation penalty $p_{i j}$ for being separated.
- We can naturally model this as a graph, with nodes V representing the pixels, and an edge (i, j) exists if pixels i and j are adjacent.

Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.
- Each pixel i has a likelihood a_{i} for being in the foreground and a likelihood b_{i} for being in the background.
- Each pair of adjacent pixels (i, j) has a separation penalty $p_{i j}$ for being separated.
- We can naturally model this as a graph, with nodes V representing the pixels, and an edge (i, j) exists if pixels i and j are adjacent.
- Question: partition V into two subsets A and B, to maximize

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Application of Min Cut 1: Image Segmentation

- An image is represented as matrix of pixels. We'd like to segment it into foreground and background.
- Each pixel i has a likelihood a_{i} for being in the foreground and a likelihood b_{i} for being in the background.
- Each pair of adjacent pixels (i, j) has a separation penalty $p_{i j}$ for being separated.
- We can naturally model this as a graph, with nodes V representing the pixels, and an edge (i, j) exists if pixels i and j are adjacent.
- Question: partition V into two subsets A and B, to maximize

$$
\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

$$
\max \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Idea: Turn the problem into a minimization problem.

$$
\min -\sum_{i \in A} a_{i}-\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

$$
\max \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Idea: Turn the problem into a minimization problem.

$$
\min -\sum_{i \in A} a_{i}-\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j} .
$$

Or

$$
\min \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j} .
$$

$$
\max \sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j} .
$$

Idea: Turn the problem into a minimization problem.

$$
\min -\sum_{i \in A} a_{i}-\sum_{j \in B} b_{j}-\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j} .
$$

Or

$$
\min \sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j} .
$$

Construct a flow network (with added source and sink) so that the capacity of any s-t cut $(\{s\} \cup A,\{t\} \cup B)$ is exactly

$$
\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{(i, j) \in E,|A \cap\{i, j\}|=1} p_{i j}
$$

Application of Min Cut 2: Project Selection

- We are given an acyclic directed graph $G=(V, E)$, each node representing a project.

Application of Min Cut 2: Project Selection

- We are given an acyclic directed graph $G=(V, E)$, each node representing a project.
- Each project i, when selected, yields a profit of $p_{i} \in \mathbb{R}$ (note that p_{i} can be negative), but can be selected only if all its prerequisites are selected as well. A project j is i 's prerequisite if $(i, j) \in E$.

Application of Min Cut 2: Project Selection

- We are given an acyclic directed graph $G=(V, E)$, each node representing a project.
- Each project i, when selected, yields a profit of $p_{i} \in \mathbb{R}$ (note that p_{i} can be negative), but can be selected only if all its prerequisites are selected as well. A project j is i 's prerequisite if $(i, j) \in E$.
- Question: select a subset A of projects to maximize

$$
\sum_{i \in A} p_{i}
$$

subject to the constraint that any project $i \in A$ must have all its prerequisites in A as well.

Application of Min Cut 2: Project Selection

- We are given an acyclic directed graph $G=(V, E)$, each node representing a project.
- Each project i, when selected, yields a profit of $p_{i} \in \mathbb{R}$ (note that p_{i} can be negative), but can be selected only if all its prerequisites are selected as well. A project j is i 's prerequisite if $(i, j) \in E$.
- Question: select a subset A of projects to maximize

$$
\sum_{i \in A} p_{i}
$$

subject to the constraint that any project $i \in A$ must have all its prerequisites in A as well.

Note: if every p_{i} is nonnegative, the problem becomes trivial. Negative profits are essential.

Solving the project selection problem

- First attempt: partition nodes into "selected" and "unselected", and design the flow network so that the cut's capacity is the total profit.
- How do we deal with negative profits?

Solving the project selection problem

- First attempt: partition nodes into "selected" and "unselected", and design the flow network so that the cut's capacity is the total profit.
- How do we deal with negative profits?
- How about the prerequisite constraints?

Solving the project selection problem

- First attempt: partition nodes into "selected" and "unselected", and design the flow network so that the cut's capacity is the total profit.
- How do we deal with negative profits?
- How about the prerequisite constraints?
- Second idea: make it hugely costly for any prerequisite constraint to be broken, so that cuts that violate any cannot have minimum capacity.

Solving the project selection problem

- First attempt: partition nodes into "selected" and "unselected", and design the flow network so that the cut's capacity is the total profit.
- How do we deal with negative profits?
- How about the prerequisite constraints?
- Second idea: make it hugely costly for any prerequisite constraint to be broken, so that cuts that violate any cannot have minimum capacity.
- Remark: This is a commonly used idea when doing reductions among problems: convert "hard" constraints to "soft" ones, and when punishments are high enough, soft constraints become hard.

