
Flow problem: basic de�nitions

Basic setup: we are given a directed graph G = (V ,E ), which
includes a special node s called the source and a node t called the

sink. Each edge e is associated with a capacity ce ≥ 0.

This is called a �ow network.

De�nition

A �ow is a function f : E → R+ satisfying:

1 capacity conditions ∀e ∈ E , 0 ≤ f (e) ≤ ce .

2 conservation conditions ∀u ∈ V \ {s, t},∑
e into v

f (e) =
∑

e out of v

f (e).

The value of a �ow f is |f | :=
∑

e out of s f (e).

The maximum �ow problem: given a �ow network, compute a �ow with

maximum value.
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The Residual Graph

De�nition

Given a �ow f in a �ow network G , the residual graph Gf is de�ned as

follows.

Gf has the same set of nodes as G (including s and t);

for each e = (u, v) of G on which f (e) < ce , e is in Gf and has

capacity ce − f (e); (such an edge is called a forward edge in Gf )

for each e = (u, v) of G on which f (e) > 0, (v , u) is in Gf , and has

capacity f (e). (such an edge is called a backward edge in Gf )

The capacities in Gf are sometimes called the residual capacities. Note

that the residual capacities are all strictly positive.
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Augmenting paths

De�nition

Any (simple) s-t path in the residual graph Gf is called an augmenting

path. In an augmenting path P in the residual graph Gf , the minimum

residual capacity is called the bottleneck, denoted as bottleneck(P, f ).

Given a �ow f in G , if there is an s-t path P in Gf , let b be

bottleneck(P, f ); we augment along P by doing the following for each edge

e = (u, v) in P :

if e is a forward edge, then we increase f (e) in G by b;

if e = (u, v) is a backward edge in Gf , then edge (v , u) is in G with

f ((v , u)) > 0, we decrease f ((v , u)) in G by b.

Proposition

The result of an augmentation, f ′, is a �ow in G .
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Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f (e)'s as the

�ow. Otherwise augment along the path and repeat.

Running time: each round takes O(m) time, but how many rounds?

Suppose all capacities are integers. Let C be
∑

e out of s ce .

Claim

The Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).
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Proof of Correctness

By the proposition we showed, f (e)'s returned by Ford-Fulkerson is

indeed a �ow.

It remains to show that it is a maximum �ow.

A �primal-dual� argument: give many upper bounds on the value of

any �ow, and then show that the �ow returned by Ford-Fulkerson is

equal to one of these bounds.

As a corollary, this will also show that maximum �primal� value (�ow

here) is equal to the minimum �dual� value (the best upper bound

here).
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Cuts

Given a graph G = (V ,E ), a cut is a partition of V into two sets A
and B . That is, A ∩ B = ∅, A ∪ B = V .

Given a graph with source s and sink t, an s-t cut is a cut (A,B) such
that s is in A and t is in B .

In a �ow network, the capacity of a cut (A,B) is

c(A,B) :=
∑

e out of A

ce .

Given a �ow f and an s-t cut (A,B),

f out(A) :=
∑

e out of A

f (e), f in(A) :=
∑

e into A

f (e).

Lemma

For any s-t cut (A,B) and any �ow f , the value of f , |f |, is
f out(A)− f in(A).
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The Max Flow Min Cut Theorem

Corollary

For any s-t cut (A,B) and any �ow f , |f | ≤ c(A,B).

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:

1 f is a maximum �ow on a �ow network G with capacities c ,

2 There is an s-t cut (A,B) with c(A,B) = |f |,
3 There exists no augmenting path in Gf .

This immediately implies the correctness of Ford-Fulkerson algorithm.

The s-t cut (A,B) with c(A,B) = |f | must have the minimum

capacity among all s-t cuts, and hence is called a minimum cut.
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Some other immediate consequences

For �ow networks with integer capacities, there is always an

inter-valued maximum �ow.

This is an example where an algorithm has an implication that doesn't

look algorithmic.

For all �ow networks (even whose capacities are not integral), a

maximum �ow exists.

Observation: given a maximum �ow in a �ow network, it takes

additional O(m) time to �nd a minimum cut.
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