
When faced with NP-hard problems..

A problem is NP-hard if it is at least as hard as an NP-complete

problem.

This notion is not restricted to decision problems.
A problem does not need to be in NP to be NP-hard. (Recall, this is in
contrast to an NP-complete problem.)

Many problems we face in practice are NP-hard. Only

exponential-time algorithms are known for them.

What should we do?

Find relatively fast exponential-time algorithms. (Not all
exponential-time algorithms are equally fast. The running time of an
algorithm is exponential if it is bounded by O(2n

c

) for some c > 0.)
Find polynomial-time algorithms for special cases of an NP-hard
problem.
Design polynomial-time approximation algorithms.
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Finding Small Vertex Covers

Recall the vertex cover problem: given an undirected graph

G = (V ,E ) and an integer k > 0, is there a vertex cover of size at

most k?

Requirement: if there is a vertex cover of size k , we would like to �nd

it; otherwise we correctly report there is none.

Straightforward enumeration: takes time Ω(nk), where n = |V |.
We would like an algorithm that runs in time O(2k · poly(n)).

For reasonably large graph and small k , the di�erence is between
impractical and practical.

Say n = 1000, k = 10.
nk ≈ 2100.
2k · kn ≈ 224.
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Designing the algorithm

Proposition

In a graph where no node has degree more than d and the number of edges

is more than dk , then there is no vertex cover of size k .

In particular, in a graph with n nodes and more than kn edges, there is no

vertex cover of size k .

De�nition

For u ∈ V , G − {u} is the graph obtained by deleting from G the node u
and all edges incident to u.

Proposition

Let e = (u, v) be any edge of G . Then G has a vertex cover of size k if

and only if at least one of G − {u} and G − {v} has a vertex cover of

size k − 1.

This gives rise to a recursive algorithm.
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Independent Sets on the Tree

An optimization version of the Independent Set problem: given an

undirected grpah G = (V ,E ), �nd an independent set of the

maximum cardinality.

Recall that S ⊆ V is an independent set if ∀u, v ∈ S , (u, v) /∈ E .

For general graphs the problem is NP-hard.

There is a polynomial-time algorithm for the problem if G is a tree.

Proposition

For any leaf v in a tree, there is an independent set of maximum cardinality

that contains v .

Proposition

For any maximum independent set S and v ∈ S , S − {v} is a maximum

independent set for the graph formed from G by removing v and all its

neighbors.

The two propositions gives rise to a greedy algorithm.
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Weighted Independent Set on the Tree

Problem: Given an undirected graph G = (V ,E ) with nonnegative

weights on the vertices: w : V → R+. Find an independent set S with

maximum total weight:
∑

v∈S w(v).

The problem is at least as hard as the unweighted version, and so is

NP-hard.

When G is a tree, the problem can be solved in polynomial time by a

dynamic programming algorithm.

Let children(v) denote the set of children of node v .

Key observation: in considering whether to choose the root v :

if we do not select v , we should take the union of the optimal solutions
for the subtrees rooted at children(v);
if we select v , we should take the union of the optimal solutions for the
subtrees rooted at children(v) but subject to that children(v) are not
selected.
But �optimal solution for a tree subject to that its root is not selected�
is precisely the �rst case.
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