
Basic Information

Instructor: Hu Fu

O�ce: ICICS-X539. Email: hufu@cs.ubc.ca

Course website: http://fuhuthu.com/CPSC420S2019/index.html

Contains links to Piazza and Gradescope.

O�ce Hours: Wednesday 2-3pm (starting Jan 9)

Teaching Assistants:

Jack Spalding-Jamieson s4x0b@ugrad.cs.ubc.ca

Da Wei (David) Zheng zhengdw@cs.ubc.ca

Yihan Zhou yihan95@cs.ubc.ca

January 2, 2019 1 / 10

http://fuhuthu.com/CPSC420S2019/index.html


What's covered

We will cover topics selected from the second half of the textbook
Algorithm Design by Kleinberg and Tardos.

The textbook is required. It is the same one as required by CPSC 320.

Network �ows and NP-completeness will be covered in details,
followed by topics selected from approximation algorithms and
randomized algorithms. Additional topics may be supplemented.

January 2, 2019 2 / 10



What's covered

We will cover topics selected from the second half of the textbook
Algorithm Design by Kleinberg and Tardos.

The textbook is required. It is the same one as required by CPSC 320.

Network �ows and NP-completeness will be covered in details,
followed by topics selected from approximation algorithms and
randomized algorithms. Additional topics may be supplemented.

January 2, 2019 2 / 10



Prerequisites

Prerequisite: CPSC 320. You should be pro�cient with asymptotic
running time analysis (e.g. big O(·) notations), basic data structures
(e.g. linked lists, trees) and basic graph algorithms (e.g. DFS, BFS,
minimum spanning trees).

You should be very comfortable with the design methods covered in
320 (e.g. greedy, dynamic programming).

Familiarity with linear algebra and probability theory will be helpful. I
will try my best to provide the basics.

In terms of what you knew and what you didn't, feedback is always
welcome, and helpful.

January 2, 2019 3 / 10



Prerequisites

Prerequisite: CPSC 320. You should be pro�cient with asymptotic
running time analysis (e.g. big O(·) notations), basic data structures
(e.g. linked lists, trees) and basic graph algorithms (e.g. DFS, BFS,
minimum spanning trees).

You should be very comfortable with the design methods covered in
320 (e.g. greedy, dynamic programming).

Familiarity with linear algebra and probability theory will be helpful. I
will try my best to provide the basics.

In terms of what you knew and what you didn't, feedback is always
welcome, and helpful.

January 2, 2019 3 / 10



Prerequisites

Prerequisite: CPSC 320. You should be pro�cient with asymptotic
running time analysis (e.g. big O(·) notations), basic data structures
(e.g. linked lists, trees) and basic graph algorithms (e.g. DFS, BFS,
minimum spanning trees).

You should be very comfortable with the design methods covered in
320 (e.g. greedy, dynamic programming).

Familiarity with linear algebra and probability theory will be helpful. I
will try my best to provide the basics.

In terms of what you knew and what you didn't, feedback is always
welcome, and helpful.

January 2, 2019 3 / 10



Prerequisites

Prerequisite: CPSC 320. You should be pro�cient with asymptotic
running time analysis (e.g. big O(·) notations), basic data structures
(e.g. linked lists, trees) and basic graph algorithms (e.g. DFS, BFS,
minimum spanning trees).

You should be very comfortable with the design methods covered in
320 (e.g. greedy, dynamic programming).

Familiarity with linear algebra and probability theory will be helpful. I
will try my best to provide the basics.

In terms of what you knew and what you didn't, feedback is always
welcome, and helpful.

January 2, 2019 3 / 10



Course work

Problem sets (30%) + Midterm (30%) + Final (40%)

Midterm date: Feb 13, Wednesday, in class.

Both exams are open book. The textbook and any written notes are
allowed. No other printed materials are allowed.

There is a problem set roughly every two weeks.

Expect curving to happen. Most likely we will not use the original
scores as your grade. (More on this later.)

January 2, 2019 4 / 10



Course work

Problem sets (30%) + Midterm (30%) + Final (40%)

Midterm date: Feb 13, Wednesday, in class.

Both exams are open book. The textbook and any written notes are
allowed. No other printed materials are allowed.

There is a problem set roughly every two weeks.

Expect curving to happen. Most likely we will not use the original
scores as your grade. (More on this later.)

January 2, 2019 4 / 10



Course work

Problem sets (30%) + Midterm (30%) + Final (40%)

Midterm date: Feb 13, Wednesday, in class.

Both exams are open book. The textbook and any written notes are
allowed. No other printed materials are allowed.

There is a problem set roughly every two weeks.

Expect curving to happen. Most likely we will not use the original
scores as your grade. (More on this later.)

January 2, 2019 4 / 10



Course work

Problem sets (30%) + Midterm (30%) + Final (40%)

Midterm date: Feb 13, Wednesday, in class.

Both exams are open book. The textbook and any written notes are
allowed. No other printed materials are allowed.

There is a problem set roughly every two weeks.

Expect curving to happen. Most likely we will not use the original
scores as your grade. (More on this later.)

January 2, 2019 4 / 10



Homework Policies

You may form groups of up to three people for each assignment,
although a group of two is encouraged. Each group needs to turn in
only one solution. Each member of the group should completely
understand the solution turned in.

Typesetting solutions using LaTex is encouraged. If, by the end of the
semester, the majority of your assignments are typeset with LaTeX,
your lowest assignment mark will be dropped from the calculation of
your course grade. (A LaTeX template is provided.)

We use Gradescope for assignments.

Some problems in the assignments are more challenging than the
others. You are encouraged to discuss problems among yourselves, on
Piazza, and/or come to o�ce hours. You should start thinking about
the problems early and not wait till the last day or two. Allow yourself
time to think and to seek help.

If you work with someone outside your group or use some outside
source, you must acknowledge them in your write-up.

January 2, 2019 5 / 10



Homework Policies

You may form groups of up to three people for each assignment,
although a group of two is encouraged. Each group needs to turn in
only one solution. Each member of the group should completely
understand the solution turned in.

Typesetting solutions using LaTex is encouraged. If, by the end of the
semester, the majority of your assignments are typeset with LaTeX,
your lowest assignment mark will be dropped from the calculation of
your course grade. (A LaTeX template is provided.)

We use Gradescope for assignments.

Some problems in the assignments are more challenging than the
others. You are encouraged to discuss problems among yourselves, on
Piazza, and/or come to o�ce hours. You should start thinking about
the problems early and not wait till the last day or two. Allow yourself
time to think and to seek help.

If you work with someone outside your group or use some outside
source, you must acknowledge them in your write-up.

January 2, 2019 5 / 10



Homework Policies

You may form groups of up to three people for each assignment,
although a group of two is encouraged. Each group needs to turn in
only one solution. Each member of the group should completely
understand the solution turned in.

Typesetting solutions using LaTex is encouraged. If, by the end of the
semester, the majority of your assignments are typeset with LaTeX,
your lowest assignment mark will be dropped from the calculation of
your course grade. (A LaTeX template is provided.)

We use Gradescope for assignments.

Some problems in the assignments are more challenging than the
others. You are encouraged to discuss problems among yourselves, on
Piazza, and/or come to o�ce hours. You should start thinking about
the problems early and not wait till the last day or two. Allow yourself
time to think and to seek help.

If you work with someone outside your group or use some outside
source, you must acknowledge them in your write-up.

January 2, 2019 5 / 10



Homework Policies

You may form groups of up to three people for each assignment,
although a group of two is encouraged. Each group needs to turn in
only one solution. Each member of the group should completely
understand the solution turned in.

Typesetting solutions using LaTex is encouraged. If, by the end of the
semester, the majority of your assignments are typeset with LaTeX,
your lowest assignment mark will be dropped from the calculation of
your course grade. (A LaTeX template is provided.)

We use Gradescope for assignments.

Some problems in the assignments are more challenging than the
others. You are encouraged to discuss problems among yourselves, on
Piazza, and/or come to o�ce hours. You should start thinking about
the problems early and not wait till the last day or two. Allow yourself
time to think and to seek help.

If you work with someone outside your group or use some outside
source, you must acknowledge them in your write-up.

January 2, 2019 5 / 10



Homework Policies

You may form groups of up to three people for each assignment,
although a group of two is encouraged. Each group needs to turn in
only one solution. Each member of the group should completely
understand the solution turned in.

Typesetting solutions using LaTex is encouraged. If, by the end of the
semester, the majority of your assignments are typeset with LaTeX,
your lowest assignment mark will be dropped from the calculation of
your course grade. (A LaTeX template is provided.)

We use Gradescope for assignments.

Some problems in the assignments are more challenging than the
others. You are encouraged to discuss problems among yourselves, on
Piazza, and/or come to o�ce hours. You should start thinking about
the problems early and not wait till the last day or two. Allow yourself
time to think and to seek help.

If you work with someone outside your group or use some outside
source, you must acknowledge them in your write-up.

January 2, 2019 5 / 10



This course is �proof-based�

For assignments and exams, unless stated otherwise, for all questions
that ask to design an algorithm, you need to provide justi�cation for,
(that is, to prove) the correctness of your algorithm.

When the question asks for a certain running time (e.g. polynomial
time, or O(n2)), you should analyze the running time of your
algorithm.

Both the lectures and the assignments are more focused on proofs.
Things will be more abstract and mathematical. (More on this later.)

January 2, 2019 6 / 10



This course is �proof-based�

For assignments and exams, unless stated otherwise, for all questions
that ask to design an algorithm, you need to provide justi�cation for,
(that is, to prove) the correctness of your algorithm.

When the question asks for a certain running time (e.g. polynomial
time, or O(n2)), you should analyze the running time of your
algorithm.

Both the lectures and the assignments are more focused on proofs.
Things will be more abstract and mathematical. (More on this later.)

January 2, 2019 6 / 10



Other Di�erences from 320

You are almost never asked to write pseudo-code. (It su�ces to say,
e.g., perform BFS.) You may resort to pseudo-code when you �nd it
the most clear way to express your idea. Very often though there is a
clearer way to say it in English.

Think of it as �talking to humans� rather than �talking to compilers�.
Train yourself in clear writing.

Proof skeleton is much less often given than in 320. You are usually
required to come up with a proof from scratch.

The course will take a slower pace than the last time I taught it.

January 2, 2019 7 / 10



Other Di�erences from 320

You are almost never asked to write pseudo-code. (It su�ces to say,
e.g., perform BFS.) You may resort to pseudo-code when you �nd it
the most clear way to express your idea. Very often though there is a
clearer way to say it in English.

Think of it as �talking to humans� rather than �talking to compilers�.
Train yourself in clear writing.

Proof skeleton is much less often given than in 320. You are usually
required to come up with a proof from scratch.

The course will take a slower pace than the last time I taught it.

January 2, 2019 7 / 10



Other Di�erences from 320

You are almost never asked to write pseudo-code. (It su�ces to say,
e.g., perform BFS.) You may resort to pseudo-code when you �nd it
the most clear way to express your idea. Very often though there is a
clearer way to say it in English.

Think of it as �talking to humans� rather than �talking to compilers�.
Train yourself in clear writing.

Proof skeleton is much less often given than in 320. You are usually
required to come up with a proof from scratch.

The course will take a slower pace than the last time I taught it.

January 2, 2019 7 / 10



Other Di�erences from 320

You are almost never asked to write pseudo-code. (It su�ces to say,
e.g., perform BFS.) You may resort to pseudo-code when you �nd it
the most clear way to express your idea. Very often though there is a
clearer way to say it in English.

Think of it as �talking to humans� rather than �talking to compilers�.
Train yourself in clear writing.

Proof skeleton is much less often given than in 320. You are usually
required to come up with a proof from scratch.

The course will take a slower pace than the last time I taught it.

January 2, 2019 7 / 10



A little more philosophy

A navigation analogy for mathematical maturity.

Compared with previous courses, the lectures may be more about big
pictures and how one approaches problems at a high level, than about
low-level details.

Understanding things is more helpful than rote memorization.

On the other hand, it is crucial to grasp �rmly basic de�nitions and to
able to state results we prove precisely.

January 2, 2019 8 / 10



A little more philosophy

A navigation analogy for mathematical maturity.

Compared with previous courses, the lectures may be more about big
pictures and how one approaches problems at a high level, than about
low-level details.

Understanding things is more helpful than rote memorization.

On the other hand, it is crucial to grasp �rmly basic de�nitions and to
able to state results we prove precisely.

January 2, 2019 8 / 10



A little more philosophy

A navigation analogy for mathematical maturity.

Compared with previous courses, the lectures may be more about big
pictures and how one approaches problems at a high level, than about
low-level details.

Understanding things is more helpful than rote memorization.

On the other hand, it is crucial to grasp �rmly basic de�nitions and to
able to state results we prove precisely.

January 2, 2019 8 / 10



How to write a proof

A proof proves the validity of a statement by showing it as a logical
consequence of other, more elementary, valid statements.

More elementary statements may be from de�nitions, or may be
proved previously.

Stating intermediate steps may help organize your thoughts and make
the presentation clean.

Setting up convenient notations may help with the writing
trememndously.

The logical steps could be some proof technique, e.g. induction.

January 2, 2019 9 / 10



How to write a proof

A proof proves the validity of a statement by showing it as a logical
consequence of other, more elementary, valid statements.

More elementary statements may be from de�nitions, or may be
proved previously.

Stating intermediate steps may help organize your thoughts and make
the presentation clean.

Setting up convenient notations may help with the writing
trememndously.

The logical steps could be some proof technique, e.g. induction.

January 2, 2019 9 / 10



How to write a proof

A proof proves the validity of a statement by showing it as a logical
consequence of other, more elementary, valid statements.

More elementary statements may be from de�nitions, or may be
proved previously.

Stating intermediate steps may help organize your thoughts and make
the presentation clean.

Setting up convenient notations may help with the writing
trememndously.

The logical steps could be some proof technique, e.g. induction.

January 2, 2019 9 / 10



How to write a proof

A proof proves the validity of a statement by showing it as a logical
consequence of other, more elementary, valid statements.

More elementary statements may be from de�nitions, or may be
proved previously.

Stating intermediate steps may help organize your thoughts and make
the presentation clean.

Setting up convenient notations may help with the writing
trememndously.

The logical steps could be some proof technique, e.g. induction.

January 2, 2019 9 / 10



How to write a proof

A proof proves the validity of a statement by showing it as a logical
consequence of other, more elementary, valid statements.

More elementary statements may be from de�nitions, or may be
proved previously.

Stating intermediate steps may help organize your thoughts and make
the presentation clean.

Setting up convenient notations may help with the writing
trememndously.

The logical steps could be some proof technique, e.g. induction.

January 2, 2019 9 / 10



Example: Finding shortest paths in a graph

Input: a directed graph G = (V ,E ), with nonnegative cost `e ≥ 0 for
each edge e ∈ E . A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

What if we remove the constraints `e ≥ 0?

Input: a directed graph G = (V ,E ), with cost `e ≥ 0 for each edge
e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

January 2, 2019 10 / 10



Example: Finding shortest paths in a graph

Input: a directed graph G = (V ,E ), with nonnegative cost `e ≥ 0 for
each edge e ∈ E . A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

What if we remove the constraints `e ≥ 0?

Input: a directed graph G = (V ,E ), with cost `e ≥ 0 for each edge
e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

January 2, 2019 10 / 10



Example: Finding shortest paths in a graph

Input: a directed graph G = (V ,E ), with nonnegative cost `e ≥ 0 for
each edge e ∈ E . A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

What if we remove the constraints `e ≥ 0?

Input: a directed graph G = (V ,E ), with cost `e ≥ 0 for each edge
e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the minimum cost of a path from s to t.

January 2, 2019 10 / 10


	Welcome to CPSC 420+500

