Learning Goals

- A simple randomized algorithm computing min cuts
- Las Vegas and Monte Carlo algorithms
- Conditional probabilities and their use in the analysis of randomized algorithms
- Improving the precision of a randomized algorithm by repetition

The Min Cut Problem

- A problem we saw in the midterm: n people attended a conference, and some pairs of them shaked hands with each other; find a set S of people, so that the number of handshakes between people in S and those not is minimized.

The Min Cut Problem

- A problem we saw in the midterm: n people attended a conference, and some pairs of them shaked hands with each other; find a set S of people, so that the number of handshakes between people in S and those not is minimized.
- Given an undirected graph $G=(V, E)$, for $S \subsetneq V, S \neq \emptyset$, let $c(S)$ be $|\{(u, v) \in E: u \in S, v \notin S\}|$, called the volume of the cut (S, \bar{S}).

The Min Cut Problem

- A problem we saw in the midterm: n people attended a conference, and some pairs of them shaked hands with each other; find a set S of people, so that the number of handshakes between people in S and those not is minimized.
- Given an undirected graph $G=(V, E)$, for $S \subsetneq V, S \neq \emptyset$, let $c(S)$ be $|\{(u, v) \in E: u \in S, v \notin S\}|$, called the volume of the cut (S, \bar{S}).
- Question: find S that minimizes $c(S)$.

The Min Cut Problem

- A problem we saw in the midterm: n people attended a conference, and some pairs of them shaked hands with each other; find a set S of people, so that the number of handshakes between people in S and those not is minimized.
- Given an undirected graph $G=(V, E)$, for $S \subsetneq V, S \neq \emptyset$, let $c(S)$ be $|\{(u, v) \in E: u \in S, v \notin S\}|$, called the volume of the cut (S, \bar{S}).
- Question: find S that minimizes $c(S)$.
- Deterministic algorithm: fix $s \in V$, then for each $t \neq s$, find the minimum number of edge-disjoint paths from s to t, corresponding to an " s - t " cut with a volume equal to the number of such paths. Take the one with the smallest volume.

A simple randomized algorithm due to David Karger

- choose an edge (u, v) uniformly at random and contract it: merge u and v into a new node w, which inherits all other edges incident to u or v.
- The resulting graph may have parallel edges: if $(s, u),(s, v) \in E$, then there are two parallel edges between s and w in the new graph.

A simple randomized algorithm due to David Karger

- choose an edge (u, v) uniformly at random and contract it: merge u and v into a new node w, which inherits all other edges incident to u or v.
- The resulting graph may have parallel edges: if $(s, u),(s, v) \in E$, then there are two parallel edges between s and w in the new graph.
- Repeat this until there are two only nodes, corresponding to a partition of V.

A simple randomized algorithm due to David Karger

- choose an edge (u, v) uniformly at random and contract it: merge u and v into a new node w, which inherits all other edges incident to u or v.
- The resulting graph may have parallel edges: if $(s, u),(s, v) \in E$, then there are two parallel edges between s and w in the new graph.
- Repeat this until there are two only nodes, corresponding to a partition of V.

Theorem

The algorithm finds a minimum cut with probability at least $1 /\binom{n}{2}$, where $n=|V|$.

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort
- A randomized algorithm is Monte Carlo if it may return incorrect solutions sometimes.

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort
- A randomized algorithm is Monte Carlo if it may return incorrect solutions sometimes.
- The min cut algorithm we just saw is Monte Carlo.

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort
- A randomized algorithm is Monte Carlo if it may return incorrect solutions sometimes.
- The min cut algorithm we just saw is Monte Carlo.
- How do we use Monte Carlo algorithms?

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort
- A randomized algorithm is Monte Carlo if it may return incorrect solutions sometimes.
- The min cut algorithm we just saw is Monte Carlo.
- How do we use Monte Carlo algorithms?
- Repeat many times independently, and take the best solution: with high probability it is optimal.

Two types of randomized algorithms

- A randomized algorithm is Las Vegas if it always returns a correct solution, but its running time may be randomized.
- Example: quick sort
- A randomized algorithm is Monte Carlo if it may return incorrect solutions sometimes.
- The min cut algorithm we just saw is Monte Carlo.
- How do we use Monte Carlo algorithms?
- Repeat many times independently, and take the best solution: with high probability it is optimal.
- Example: for the min cut algorithm, repeat $n^{2} \log n$ times, the probability that no correct solution shows up is $\leq 1 / n$.

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.
- Observation: the degree of any node is at least k.

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.
- Observation: the degree of any node is at least k.
- This is still true after contracting an edge.

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.
- Observation: the degree of any node is at least k.
- This is still true after contracting an edge.
- Let \mathcal{E}_{1} be the event that, in the first step, an edge not in C is chosen.

$$
\operatorname{Pr}\left[\overline{\mathcal{E}_{1}}\right] \leq \frac{k}{|E|} \leq \frac{k}{\frac{n k}{2}}=\frac{2}{n}
$$

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.
- Observation: the degree of any node is at least k.
- This is still true after contracting an edge.
- Let \mathcal{E}_{1} be the event that, in the first step, an edge not in C is chosen.

$$
\operatorname{Pr}\left[\overline{\mathcal{E}_{1}}\right] \leq \frac{k}{|E|} \leq \frac{k}{\frac{n k}{2}}=\frac{2}{n}
$$

- Let \mathcal{E}_{i} be the event that, in the i-th step, an edge not in C is chosen. Then we need to show $\operatorname{Pr}\left[\cap_{i=1}^{n-2} \mathcal{E}_{i}\right] \geq 1 /\binom{n}{2}$.

Analysis of the algorithm

- Let C be the set of edges in a min cut. Let k be $|C|$.
- Observation: the degree of any node is at least k.
- This is still true after contracting an edge.
- Let \mathcal{E}_{1} be the event that, in the first step, an edge not in C is chosen.

$$
\operatorname{Pr}\left[\overline{\mathcal{E}_{1}}\right] \leq \frac{k}{|E|} \leq \frac{k}{\frac{n k}{2}}=\frac{2}{n}
$$

- Let \mathcal{E}_{i} be the event that, in the i-th step, an edge not in C is chosen. Then we need to show $\operatorname{Pr}\left[\cap_{i=1}^{n-2} \mathcal{E}_{i}\right] \geq 1 /\binom{n}{2}$.
- The minimum degree never decreases after an edge is contracted. As long as no edge in C is contracted, C remains a min cut.

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.
- Example 3: Your neighbor has two kids. Conditioning on the elder one being a boy, what's the probability that the younger one is a boy? (For this question, assume binary gender, and that each kid is a boy with probability $1 / 2$, independently.)

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.
- Example 3: Your neighbor has two kids. Conditioning on the elder one being a boy, what's the probability that the younger one is a boy? (For this question, assume binary gender, and that each kid is a boy with probability $1 / 2$, independently.)
- Example 4: Total probability rule:

$$
\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] \operatorname{Pr}[B]
$$

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.
- Example 3': Your neighbor has two kids. Conditioning on one of them being a boy, what is the probability that the other one is a boy?

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.
- Example 3': Your neighbor has two kids. Conditioning on one of them being a boy, what is the probability that the other one is a boy?
- Answer: $1 / 3$. A less deceptive version: Conditioning on that not both of them are girls, what is the probabilty that both are boys?

Brief review of conditional probabilities

- The probability of event A happening conditioning on event B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Example 1: toss two dices, let A be the event "the sum of points is 10 ", and B the event "the first dice turns up 6 ". Then $\operatorname{Pr}[A \mid B]=1 / 6$.
- Example 2: If A and B are independent, then $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.
- Example 3': Your neighbor has two kids. Conditioning on one of them being a boy, what is the probability that the other one is a boy?
- Answer: $1 / 3$. A less deceptive version: Conditioning on that not both of them are girls, what is the probabilty that both are boys?
- Let the atom events be $\mathrm{BB}, \mathrm{BG}, \mathrm{GB}, \mathrm{GG}$, each with probability $1 / 4$. Then event A, "one of them is a boy", is $\{\mathrm{BB}, \mathrm{BG}, \mathrm{GB}\}$, and event B, "both are boys", is $\{B B\}$. So $\operatorname{Pr}[B \mid A]=\frac{|A \cap B|}{|A|}=1 / 3$.

Using Conditional Probabilities

- Key observation: conditioning on $\mathcal{E}_{1}, \cdots, \mathcal{E}_{i}$, $\operatorname{Pr}\left[\mathcal{E}_{i+1} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i}\right] \geq 1-\frac{2}{n-i}$.

Using Conditional Probabilities

- Key observation: conditioning on $\mathcal{E}_{1}, \cdots, \mathcal{E}_{i}$,

$$
\operatorname{Pr}\left[\mathcal{E}_{i+1} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i}\right] \geq 1-\frac{2}{n-i}
$$

- Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\cap_{i=1}^{n-2} \mathcal{E}_{i}\right] & =\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdots \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \cap_{i=1}^{n-3} \mathcal{E}_{i}\right] \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{3}\right) \\
& =\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdots \frac{2}{4} \cdot \frac{1}{3} \\
& =\frac{2}{n(n-1)}=\frac{1}{\binom{n}{2}} .
\end{aligned}
$$

