
Application of Network Flow 1: Bipartite Matchings

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

The maximum bipartite matching problem:

Input: a bipartite graph G = (U,V ,E ). (Recall: this means all edges

have one node in U and the other in V .)

Output: a matching M with the maximum cardinality.

Reduce the problem to a max �ow problem.

Add a source s connected to all nodes in U, and a sink t connected to

all nodes in V .

Direct the edges from s to U to V to t.
Let all capacities be 1.

We can �nd a maximum bipartite matching in time O(mn).
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Further consequences

De�nition

In a biparitite graph G = (U,V ,E ) with |U| = |V |, a matching M is said

to be perfect if |M| = |U|.

In an undirected graph G = (V ,E ), a node u is a neighbor of another

node v if (u, v) ∈ E . For a set of nodes S ⊆ V , let us denote by δ(S) the
�neighbors� of S , i.e., a node is in δ(S) if it has a neighbor in S .

Theorem

Hall's Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U,V ,E )
has a perfect matching if and only if for any S ⊆ U, |δ(S)| ≥ |S |.

Proof idea: To show a perfect matching exists, argue that the min cut in

the corresponding �ow network has capacity n.
(One can also show the theorem directly via induction. Try it!)

Bipartite matchings via network �ow January 8, 2019 2 / 3



Further consequences

De�nition

In a biparitite graph G = (U,V ,E ) with |U| = |V |, a matching M is said

to be perfect if |M| = |U|.

In an undirected graph G = (V ,E ), a node u is a neighbor of another

node v if (u, v) ∈ E .

For a set of nodes S ⊆ V , let us denote by δ(S) the
�neighbors� of S , i.e., a node is in δ(S) if it has a neighbor in S .

Theorem

Hall's Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U,V ,E )
has a perfect matching if and only if for any S ⊆ U, |δ(S)| ≥ |S |.

Proof idea: To show a perfect matching exists, argue that the min cut in

the corresponding �ow network has capacity n.
(One can also show the theorem directly via induction. Try it!)

Bipartite matchings via network �ow January 8, 2019 2 / 3



Further consequences

De�nition

In a biparitite graph G = (U,V ,E ) with |U| = |V |, a matching M is said

to be perfect if |M| = |U|.

In an undirected graph G = (V ,E ), a node u is a neighbor of another

node v if (u, v) ∈ E . For a set of nodes S ⊆ V , let us denote by δ(S) the
�neighbors� of S , i.e., a node is in δ(S) if it has a neighbor in S .

Theorem

Hall's Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U,V ,E )
has a perfect matching if and only if for any S ⊆ U, |δ(S)| ≥ |S |.

Proof idea: To show a perfect matching exists, argue that the min cut in

the corresponding �ow network has capacity n.
(One can also show the theorem directly via induction. Try it!)

Bipartite matchings via network �ow January 8, 2019 2 / 3



Further consequences

De�nition

In a biparitite graph G = (U,V ,E ) with |U| = |V |, a matching M is said

to be perfect if |M| = |U|.

In an undirected graph G = (V ,E ), a node u is a neighbor of another

node v if (u, v) ∈ E . For a set of nodes S ⊆ V , let us denote by δ(S) the
�neighbors� of S , i.e., a node is in δ(S) if it has a neighbor in S .

Theorem

Hall's Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U,V ,E )
has a perfect matching if and only if for any S ⊆ U, |δ(S)| ≥ |S |.

Proof idea: To show a perfect matching exists, argue that the min cut in

the corresponding �ow network has capacity n.

(One can also show the theorem directly via induction. Try it!)

Bipartite matchings via network �ow January 8, 2019 2 / 3



Further consequences

De�nition

In a biparitite graph G = (U,V ,E ) with |U| = |V |, a matching M is said

to be perfect if |M| = |U|.

In an undirected graph G = (V ,E ), a node u is a neighbor of another

node v if (u, v) ∈ E . For a set of nodes S ⊆ V , let us denote by δ(S) the
�neighbors� of S , i.e., a node is in δ(S) if it has a neighbor in S .

Theorem

Hall's Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U,V ,E )
has a perfect matching if and only if for any S ⊆ U, |δ(S)| ≥ |S |.

Proof idea: To show a perfect matching exists, argue that the min cut in

the corresponding �ow network has capacity n.
(One can also show the theorem directly via induction. Try it!)

Bipartite matchings via network �ow January 8, 2019 2 / 3



A Glimpse at Better Algorithms

Reducing to network �ows and solving by Ford-Fulkerson is not the

fastest algorithm to �nd maximum bipartite matchings.

Fastest algorithm known: Hopcroft-Karp algorithm, which runs in time

O(m
√
n).

Basic idea: In each iteration, instead of augmenting along a path, look

for a maximal set of vertex-disjoint shortest augmenting paths, and

augment along all of them.

Similar ideas (of augmenting along a collection of shortest paths that

�block� s from t) lead to faster algorithms for the max �ow problem:

Dinic's algorithm, running in time O(mn2).

(The algorithm by Edmonds and Karp that run in time O(m2n) is an
important predecessor.
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