Application of Network Flow 1: Bipartite Matchings

Definition
Given an undirected graph G = (V,E), a set of edges M C E is a
matching if each node in V is incident to at most one edge in M.

Bipartite matchings via network flow January 8, 2019 1/3



Application of Network Flow 1: Bipartite Matchings

Definition
Given an undirected graph G = (V,E), a set of edges M C E is a
matching if each node in V is incident to at most one edge in M.

The maximum bipartite matching problem:
@ Input: a bipartite graph G = (U, V, E). (Recall: this means all edges
have one node in U and the other in V.)
@ Qutput: a matching M with the maximum cardinality.
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Application of Network Flow 1: Bipartite Matchings

Definition
Given an undirected graph G = (V,E), a set of edges M C E is a
matching if each node in V is incident to at most one edge in M.

The maximum bipartite matching problem:
@ Input: a bipartite graph G = (U, V, E). (Recall: this means all edges
have one node in U and the other in V.)
@ Qutput: a matching M with the maximum cardinality.
@ Reduce the problem to a max flow problem.

o Add a source s connected to all nodes in U, and a sink t connected to
all nodes in V.

o Direct the edges from s to U to V to t.

o Let all capacities be 1.

@ We can find a maximum bipartite matching in time O(mn).
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Further consequences

Definition

In a biparitite graph G = (U, V, E) with |U| = |V/|, a matching M is said
to be perfect if |[M| = |U].
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Further consequences
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In a biparitite graph G = (U, V, E) with |U| = |V
to be perfect if |[M| = |U].

, @ matching M is said

In an undirected graph G = (V, E), a node u is a neighbor of another
node v if (u,v) € E. For a set of nodes S C V, let us denote by 4(S) the
“neighbors” of S, i.e., a node is in 4(S) if it has a neighbor in S.

Hall’s Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U, V, E)
has a perfect matching if and only if for any S C U, |6(S)| > |S].
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Further consequences

Definition

In a biparitite graph G = (U, V, E) with |[U| = |V
to be perfect if |[M| = |U].

, @ matching M is said

In an undirected graph G = (V, E), a node u is a neighbor of another
node v if (u,v) € E. For a set of nodes S C V, let us denote by 4(S) the
“neighbors” of S, i.e., a node is in 4(S) if it has a neighbor in S.

Hall’s Theorem, a.k.a. Marriage Theorem A bipartite graph G = (U, V, E)
has a perfect matching if and only if for any S C U, |6(S)| > |S].

Proof idea: To show a perfect matching exists, argue that the min cut in
the corresponding flow network has capacity n.
(One can also show the theorem directly via induction. Try it!)
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A Glimpse at Better Algorithms

@ Reducing to network flows and solving by Ford-Fulkerson is not the
fastest algorithm to find maximum bipartite matchings.
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@ Reducing to network flows and solving by Ford-Fulkerson is not the
fastest algorithm to find maximum bipartite matchings.

o Fastest algorithm known: Hopcroft-Karp algorithm, which runs in time
O(m+/n).

@ Basic idea: In each iteration, instead of augmenting along a path, look
for a maximal set of vertex-disjoint shortest augmenting paths, and
augment along all of them.

@ Similar ideas (of augmenting along a collection of shortest paths that
“block” s from t) lead to faster algorithms for the max flow problem:
Dinic’s algorithm, running in time O(mn?).

o (The algorithm by Edmonds and Karp that run in time O(m?n) is an
important predecessor.
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