
Polynomial-time Reductions

Disclaimer: Many de�nitions in these slides should be taken as �the

intuitive meaning�, as the precise meaning of some of the terms are hard to

pin down without introducing the formal machinery of computational

models (the Turing machine in particular).

De�nition

A problem is a decision problem if its answer is either TRUE or FALSE.

De�nition

A decision problem A is polynomial-time reducible to a decision problem B
if there exists an algorithm that solves any instance of A with a polynomial

number of standard computational steps, plus a polynomial number of calls

to a (black-box) oracle (think of it as a function) that solves instances of B .

We denote this as A ≤P B .

If A ≤P B , and B can be solved in polynomial time, then A can be

solved in polynonmial time.
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A special class of reductions: Karp reductions

One way to show A ≤P B : give a polynomial-time algorithm ϕ, with

Input: an instance a of A
Output: an instance ϕ(a) of B
Guarantee: the answer to a is TRUE ⇔ the answer to ϕ(a) is TRUE.

The resulting polynomial-time reduction: take an instance a of A, run
ϕ on a, and call the oracle to solve ϕ(a), and return the answer to

ϕ(a).

Such a reduction calls the oracle to solve B only once. This is called a

Karp reduction (a.k.a. a many-to-one reduction).

A general polynomial-time reduction is called a poly-time Turing

reduction, a.k.a. a Cook reduction.

In this class we always do Karp reductions. In the sequel, whenever we

say poly-time reductions, think of Karp reductions.
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Polynomial time reduction example

De�nition

Given a graph G = (V ,E ), a set of nodes S ⊆ V is an independent set if

no two nodes in S are connected by an edge.

De�nition

In the Independent Set problem, we are given a graph G = (V ,E ) and an

integer k , and answer whether there exists an independent set of G of size

at least k .
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The classes P and NP

The class P is the set of all decision problems that can be solved in

polynomial time.

The class NP (standing for nondeterministic polynomial time): a

decision problem A is in NP if there exists a polynomial-time veri�er

algorithm V for the following task: if the answer to an instance a of A
is YES, then there exists a polynomial-length certi�cate c(a), such
that V , when provided with both the instance a and the certi�cate,

will return yes; on the other hand, if the answer to an instance a of A
is NO, then V returns NO, no matter what certi�cate it is given.

P ⊆ NP.

Example: Independent Set ∈ NP.

One of the most famous questions in (theoretical) computer science:

NP ⊆ P?
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NP Completeness

A problem A in a class C of problems is said to be C-complete if all

problems in C can be reduced to A by an �appropriate� reduction.

For the class NP, the �appropriate� reductions are the polynomial-time

reductions. A problem is NP-complete if it is in NP and if all other

problems in NP can be reduced to it in polynomial time.

Theorem (Cook-Levin)

SAT is NP-complete.

De�nition

In a Boolean satis�ability (SAT) problem, we are given a Boolean formula,

and answer whether there exists an interpretation of the variables that

makes the formula true. That is, we need to decide whether there is a way

of assigning TRUE and FALSE to each variable so that the formula

evaluates to TRUE.
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First examples of NP-complete problems

A boolean formula is in conjunctive normal form (CNF) if it is �AND's

of OR's�. The problem of 3-SAT is the problem of deciding the

satis�ability of a boolean formula in CNF where each OR case involves

at most 3 literals.

3-SAT is NP-complete.

Observation: Polynomial reduction is transitive, i.e., if A ≤P B ,
B ≤P C , then A ≤P C .

Corollary

If a problem A is in NP, and if there is any NP-complete problem B such

that B ≤P A, then A is NP-complete.

Example

The Independent set problem is NP-complete.
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Procedure to show NP completeness

Recall Corollary: If a problem A is in NP, and if there is any NP-complete

problem B such that B ≤P A, then A is NP-complete.

Given a problem A, to show it is NP-complete, we show that

1 It is in NP, by constructing a polynomial-time veri�er and

polynomial-length certi�cates for TRUE instances;
2 There is an NP-complete problem B , such that B ≤P A. To do this,

we

Give a polynomial time algorithm ϕ which takes in an instance of B
and outputs an instance of A, and
Show that an instance b of B has answer TRUE if and only if the

instance ϕ(b) has answer TRUE.
Argue that ϕ runs in polynomial time.
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