Polynomial-time Reductions

Disclaimer: Many definitions in these slides should be taken as “the
intuitive meaning”, as the precise meaning of some of the terms are hard to
pin down without introducing the formal machinery of computational
models (the Turing machine in particular).

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

February 4, 2019 1/16



Polynomial-time Reductions

Disclaimer: Many definitions in these slides should be taken as “the
intuitive meaning”, as the precise meaning of some of the terms are hard to
pin down without introducing the formal machinery of computational
models (the Turing machine in particular).

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

Definition

A decision problem A is polynomial-time reducible to a decision problem B
if there exists an algorithm that solves any instance of A with a polynomial
number of standard computational steps, plus a polynomial number of calls
to a (black-box) oracle (think of it as a function) that solves instances of B.

@ We denote thisas A <p B .

February 4, 2019 1/16



Polynomial-time Reductions

Disclaimer: Many definitions in these slides should be taken as “the
intuitive meaning”, as the precise meaning of some of the terms are hard to
pin down without introducing the formal machinery of computational
models (the Turing machine in particular).

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

Definition

A decision problem A is polynomial-time reducible to a decision problem B
if there exists an algorithm that solves any instance of A with a polynomial
number of standard computational steps, plus a polynomial number of calls
to a (black-box) oracle (think of it as a function) that solves instances of B.

@ We denote thisas A <p B .

o If A<p B, and B can be solved in polynomial time, then A can be
solved in polynonmial time.

February 4, 2019 1/16



A special class of reductions: Karp reductions

@ One way to show A <p B: give a polynomial-time algorithm ¢, with

e Input: an instance a of A
o Output: an instance p(a) of B
o Guarantee: the answer to a is TRUE < the answer to (a) is TRUE.

February 4, 2019 2/16



A special class of reductions: Karp reductions

@ One way to show A <p B: give a polynomial-time algorithm ¢, with

e Input: an instance a of A

o Output: an instance p(a) of B
o Guarantee: the answer to a is TRUE < the answer to (a) is TRUE.

@ The resulting polynomial-time reduction: take an instance a of A, run
¢ on a, and call the oracle to solve (a), and return the answer to

©(a).

February 4, 2019 2/16



A special class of reductions: Karp reductions

One way to show A <p B: give a polynomial-time algorithm ¢, with

e Input: an instance a of A

o Output: an instance p(a) of B

o Guarantee: the answer to a is TRUE < the answer to (a) is TRUE.
The resulting polynomial-time reduction: take an instance a of A, run
¢ on a, and call the oracle to solve (a), and return the answer to
p(a).
Such a reduction calls the oracle to solve B only once. This is called a
Karp reduction (a.k.a. a many-to-one reduction).

A general polynomial-time reduction is called a poly-time Turing
reduction, a.k.a. a Cook reduction.

February 4, 2019 2/16



A special class of reductions: Karp reductions

One way to show A <p B: give a polynomial-time algorithm ¢, with
e Input: an instance a of A
o Output: an instance p(a) of B
o Guarantee: the answer to a is TRUE < the answer to (a) is TRUE.

The resulting polynomial-time reduction: take an instance a of A, run
¢ on a, and call the oracle to solve (a), and return the answer to
p(a).

Such a reduction calls the oracle to solve B only once. This is called a
Karp reduction (a.k.a. a many-to-one reduction).

A general polynomial-time reduction is called a poly-time Turing
reduction, a.k.a. a Cook reduction.

@ In this class we always do Karp reductions. In the sequel, whenever we
say poly-time reductions, think of Karp reductions.

February 4, 2019 2/16



Polynomial time reduction example

Definition

Given a graph G = (V, E), a set of nodes S C V is an independent set if
no two nodes in S are connected by an edge.

February 4, 2019 3/16



Polynomial time reduction example

Given a graph G = (V, E), a set of nodes S C V is an independent set if
no two nodes in S are connected by an edge.

Definition
In the Independent Set problem, we are given a graph G = (V, E) and an
integer k, and answer whether there exists an independent set of G of size
at least k.

February 4, 2019 3/16



Polynomial time reduction example

Definition

Given a graph G = (V,E), a set of nodes S C V is a vertex cover if every
edge is incident to at least one node in S.

February 4, 2019 4/16



Polynomial time reduction example

Given a graph G = (V,E), a set of nodes S C V is a vertex cover if every
edge is incident to at least one node in S.

Definition

In the Vertex Cover problem, we are given a graph G = (V, E) and an
integer k, and answer whether there exists a vertex cover of size at most k.

February 4, 2019 4/16



Polynomial time reduction example

Given a graph G = (V,E), a set of nodes S C V is a vertex cover if every
edge is incident to at least one node in S.

Definition

| A\

In the Vertex Cover problem, we are given a graph G = (V, E) and an
integer k, and answer whether there exists a vertex cover of size at most k.

Proposition

Independent Set <p Vertex Cover.
Vertex Cover <p Independent Set.

February 4, 2019 4/16



The classes P and NP

@ The class P is the set of all decision problems that can be solved in
polynomial time.

February 4, 2019 5/16



The classes P and NP

@ The class P is the set of all decision problems that can be solved in
polynomial time.

@ The class NP (standing for nondeterministic polynomial time): a
decision problem A is in NP if there exists a polynomial-time verifier
algorithm V for the following task: if the answer to an instance a of A
is YES, then there exists a polynomial-length certificate c(a), such
that V, when provided with both the instance a and the certificate,
will return yes; on the other hand, if the answer to an instance a of A
is NO, then V returns NO, no matter what certificate it is given.

February 4, 2019 5/16



The classes P and NP

@ The class P is the set of all decision problems that can be solved in
polynomial time.

@ The class NP (standing for nondeterministic polynomial time): a
decision problem A is in NP if there exists a polynomial-time verifier
algorithm V for the following task: if the answer to an instance a of A
is YES, then there exists a polynomial-length certificate c(a), such
that V, when provided with both the instance a and the certificate,
will return yes; on the other hand, if the answer to an instance a of A
is NO, then V returns NO, no matter what certificate it is given.

e P C NP.

February 4, 2019 5/16



The classes P and NP

@ The class P is the set of all decision problems that can be solved in
polynomial time.

@ The class NP (standing for nondeterministic polynomial time): a
decision problem A is in NP if there exists a polynomial-time verifier
algorithm V for the following task: if the answer to an instance a of A
is YES, then there exists a polynomial-length certificate c(a), such
that V, when provided with both the instance a and the certificate,
will return yes; on the other hand, if the answer to an instance a of A
is NO, then V returns NO, no matter what certificate it is given.

e P C NP.
o Example: Independent Set € NP.

February 4, 2019 5/16



The classes P and NP

@ The class P is the set of all decision problems that can be solved in
polynomial time.

@ The class NP (standing for nondeterministic polynomial time): a
decision problem A is in NP if there exists a polynomial-time verifier
algorithm V for the following task: if the answer to an instance a of A
is YES, then there exists a polynomial-length certificate c(a), such
that V, when provided with both the instance a and the certificate,
will return yes; on the other hand, if the answer to an instance a of A
is NO, then V returns NO, no matter what certificate it is given.

e P C NP.
o Example: Independent Set € NP.

@ One of the most famous questions in (theoretical) computer science:
NP C P?

February 4, 2019 5/16



NP Completeness

@ A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by an “appropriate” reduction.

February 4, 2019 6/16



NP Completeness

@ A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by an “appropriate” reduction.

@ For the class NP, the “appropriate” reductions are the polynomial-time
reductions. A problem is NP-complete if it is in NP and if all other
problems in NP can be reduced to it in polynomial time.

February 4, 2019 6/16



NP Completeness

@ A problem A in a class C of problems is said to be C-complete if all
problems in C can be reduced to A by an “appropriate” reduction.

@ For the class NP, the “appropriate” reductions are the polynomial-time
reductions. A problem is NP-complete if it is in NP and if all other
problems in NP can be reduced to it in polynomial time.

Theorem (Cook-Levin)
SAT is NP-complete.

Definition

In a Boolean satisfiability (SAT) problem, we are given a Boolean formula,
and answer whether there exists an interpretation of the variables that
makes the formula true. That is, we need to decide whether there is a way
of assigning TRUE and FALSE to each variable so that the formula
evaluates to TRUE.

February 4, 2019 6/16




First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

February 4, 2019 7/16



First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

@ 3-SAT is NP-complete.

February 4, 2019 7/16



First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

@ 3-SAT is NP-complete.

@ Observation: Polynomial reduction is transitive, i.e., if A <p B,
B <p C, then A <p C.

February 4, 2019 7/16



First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

@ 3-SAT is NP-complete.

@ Observation: Polynomial reduction is transitive, i.e., if A <p B,
B <p C, then A <p C.

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

February 4, 2019 7/16



First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

@ 3-SAT is NP-complete.

@ Observation: Polynomial reduction is transitive, i.e., if A <p B,
B <p C, then A <p C.

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

February 4, 2019 7/16



First examples of NP-complete problems

@ A boolean formula is in conjunctive normal form (CNF) if it is “AND’s
of OR’s". The problem of 3-SAT is the problem of deciding the
satisfiability of a boolean formula in CNF where each OR case involves
at most 3 literals.

@ 3-SAT is NP-complete.

@ Observation: Polynomial reduction is transitive, i.e., if A <p B,
B <p C, then A <p C.

If a problem A is in NP, and if there is any NP-complete problem B such
that B <p A, then A is NP-complete.

The Independent set problem is NP-complete.

February 4, 2019 7/16




Procedure to show NP completeness

Recall Corollary: If a problem A is in NP, and if there is any NP-complete
problem B such that B <p A, then A is NP-complete.

February 4, 2019



Procedure to show NP completeness

Recall Corollary: If a problem A is in NP, and if there is any NP-complete
problem B such that B <p A, then A is NP-complete.
Given a problem A, to show it is NP-complete, we show that

@ It is in NP, by constructing a polynomial-time verifier and
polynomial-length certificates for TRUE instances;
© There is an NP-complete problem B, such that B <p A. To do this,
we
e Give a polynomial time algorithm ¢ which takes in an instance of B

and outputs an instance of A, and
e Show that an instance b of B has answer TRUE if and only if the

instance ¢(b) has answer TRUE.
o Argue that ¢ runs in polynomial time.

February 4, 2019 8/16




	NP-completeness and Polynomial time reductions

