
Finding shortest paths in a graph

Input: a directed graph G = (V ,E), with nonnegative cost ce ≥ 0 for

each edge e ∈ E . A node s ∈ V .

Output: for each node v ∈ V , a minimum-cost path from s to v .

Dijkstra's algorithm: a greedy approach

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), p(v)← s,
otherwise d(v)←∞, p(v)← ⊥. Let S be {s}.
Iterate: while S 6= V and there exists v ∈ V \ S such that d(v) 6=∞:

let u be the minimizer of d(u) among nodes not in S ;
add u to S
for each v ∈ V \ S such that (u, v) ∈ E , if d(v) > d(u) + c(u,v),
update d(v)← d(u) + c(u,v) and p(v)← u.

Output: for each v ∈ S , trace the path back to s using p(·).

January 6, 2019 1 / 6

Finding shortest paths in a graph

Input: a directed graph G = (V ,E), with nonnegative cost ce ≥ 0 for

each edge e ∈ E . A node s ∈ V .

Output: for each node v ∈ V , a minimum-cost path from s to v .

Dijkstra's algorithm: a greedy approach

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), p(v)← s,
otherwise d(v)←∞, p(v)← ⊥. Let S be {s}.
Iterate: while S 6= V and there exists v ∈ V \ S such that d(v) 6=∞:

let u be the minimizer of d(u) among nodes not in S ;
add u to S
for each v ∈ V \ S such that (u, v) ∈ E , if d(v) > d(u) + c(u,v),
update d(v)← d(u) + c(u,v) and p(v)← u.

Output: for each v ∈ S , trace the path back to s using p(·).

January 6, 2019 1 / 6

Finding shortest paths in a graph

Input: a directed graph G = (V ,E), with nonnegative cost ce ≥ 0 for

each edge e ∈ E . A node s ∈ V .

Output: for each node v ∈ V , a minimum-cost path from s to v .

Dijkstra's algorithm: a greedy approach

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), p(v)← s,
otherwise d(v)←∞, p(v)← ⊥. Let S be {s}.

Iterate: while S 6= V and there exists v ∈ V \ S such that d(v) 6=∞:

let u be the minimizer of d(u) among nodes not in S ;
add u to S
for each v ∈ V \ S such that (u, v) ∈ E , if d(v) > d(u) + c(u,v),
update d(v)← d(u) + c(u,v) and p(v)← u.

Output: for each v ∈ S , trace the path back to s using p(·).

January 6, 2019 1 / 6

Finding shortest paths in a graph

Input: a directed graph G = (V ,E), with nonnegative cost ce ≥ 0 for

each edge e ∈ E . A node s ∈ V .

Output: for each node v ∈ V , a minimum-cost path from s to v .

Dijkstra's algorithm: a greedy approach

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), p(v)← s,
otherwise d(v)←∞, p(v)← ⊥. Let S be {s}.
Iterate: while S 6= V and there exists v ∈ V \ S such that d(v) 6=∞:

let u be the minimizer of d(u) among nodes not in S ;
add u to S
for each v ∈ V \ S such that (u, v) ∈ E , if d(v) > d(u) + c(u,v),
update d(v)← d(u) + c(u,v) and p(v)← u.

Output: for each v ∈ S , trace the path back to s using p(·).

January 6, 2019 1 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.

(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.

Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case when S = {s} is trivial.
(Introduce notation) Denote by Pv the path output by the algorithm

for node v .

When a node u is added to S with p(u) = v , show:

Among all paths within S , Pu has the minimum cost.
Pu has no more cost than any path that leaves S at some point.

Where did we use the condition ce ≥ 0?

January 6, 2019 2 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.

Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.

If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).

Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Dealing with negative costs

Input: a directed graph G = (V ,E), with cost ce ≥ 0 for each edge

e ∈ E , and no negative cycle. A node s ∈ V .

Output: for each node t ∈ V , the cost of a minimum-cost path from s
to t.

What goes wrong when there is a negative cycle?

Bellman-Ford Algorithm:

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), otherwise
d(v)←∞.
Iterate: for each node v ∈ V , for each u such that (u, v) ∈ E ,
d(v)← min{d(v), d(u) + c(u,v)}. If no update occurs in an iteration,
terminate.
If the program does not terminate after n − 1 rounds, report error (a
negative cycle is found).
Output d(v) for each v ∈ V .

January 6, 2019 3 / 6

Proof of Correctness

Lemma

In a graph containing no negative cycles, between any two nodes there is a

minimum-cost path consisting of at most n − 1 edges.

Proof.

Take any minimum-cost path from s to t. If the path passes a node v
twice, the part of the path between these is a cycle. Removing this cycle

will not increase the total cost. Repeat this procedure until the path passes

each node at most once.

January 6, 2019 4 / 6

Proof of Correctness

Lemma

In a graph containing no negative cycles, between any two nodes there is a

minimum-cost path consisting of at most n − 1 edges.

Proof.

Take any minimum-cost path from s to t. If the path passes a node v
twice, the part of the path between these is a cycle. Removing this cycle

will not increase the total cost. Repeat this procedure until the path passes

each node at most once.

January 6, 2019 4 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Proof of Correctness

By induction.

(Introduce additional notation for clarity:) let di (v) be the value of

d(v) after the i-th iteration of the algorithm.

Induction hypothesis: for each v ∈ V , di (v) is no larger than the cost

of a minimum-cost path from s to v using at most i + 1 edges.

For all i , di (v) is the cost of an actual path from s to v .

Combining the lemma, when there is no negative cycle, after at most

n − 1 steps, d(v) is the cost of a minimum-cost path.

Running time: O(mn), i.e., O(|V | · |E |).

January 6, 2019 5 / 6

Implementation of Dijkstra

Implementation of Dijkstra using priority queue

Running time: O(m log n).

January 6, 2019 6 / 6

Implementation of Dijkstra

Implementation of Dijkstra using priority queue

Running time: O(m log n).

January 6, 2019 6 / 6

	Quick Review of Greedy and Dynamic Programming

