Finding shortest paths in a graph

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v.

Finding shortest paths in a graph

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v.
- Dijkstra's algorithm: a greedy approach

Finding shortest paths in a graph

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v.
- Dijkstra's algorithm: a greedy approach
- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, $p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty$, $p(v) \leftarrow \bot$. Let S be $\{s\}$.

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v.
- Dijkstra's algorithm: a greedy approach
- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, $p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty$, $p(v) \leftarrow \bot$. Let S be $\{s\}$.
- Iterate: while $S \neq V$ and there exists $v \in V \setminus S$ such that $d(v) \neq \infty$:
 - let u be the minimizer of d(u) among nodes not in S;
 - add u to S
 - for each $v \in V \setminus S$ such that $(u, v) \in E$, if $d(v) > d(u) + c_{(u,v)}$, update $d(v) \leftarrow d(u) + c_{(u,v)}$ and $p(v) \leftarrow u$.

• Output: for each $v \in S$, trace the path back to s using $p(\cdot)$.

< □ > < 同 > < 回 > < 回 > < 回 >

• Proof by induction.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case when $S = \{s\}$ is trivial.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case when $S = \{s\}$ is trivial.
- (Introduce notation) Denote by P_v the path output by the algorithm for node v.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case when $S = \{s\}$ is trivial.
- (Introduce notation) Denote by P_v the path output by the algorithm for node v.
- When a node u is added to S with p(u) = v, show:
 - Among all paths within S, P_u has the minimum cost.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case when $S = \{s\}$ is trivial.
- (Introduce notation) Denote by P_v the path output by the algorithm for node v.
- When a node u is added to S with p(u) = v, show:
 - Among all paths within S, P_u has the minimum cost.
 - P_u has no more cost than any path that leaves S at some point.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case when $S = \{s\}$ is trivial.
- (Introduce notation) Denote by P_v the path output by the algorithm for node v.
- When a node u is added to S with p(u) = v, show:
 - Among all paths within S, P_u has the minimum cost.
 - P_u has no more cost than any path that leaves S at some point.
- Where did we use the condition $c_e \ge 0$?

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.

- Input: a directed graph G = (V, E), with cost c_e ≥ 0 for each edge e ∈ E, and no negative cycle. A node s ∈ V.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?
- Bellman-Ford Algorithm:

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?
- Bellman-Ford Algorithm:
 - Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, otherwise $d(v) \leftarrow \infty$.

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?
- Bellman-Ford Algorithm:
 - Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, otherwise $d(v) \leftarrow \infty$.
 - Iterate: for each node v ∈ V, for each u such that (u, v) ∈ E, d(v) ← min{d(v), d(u) + c_(u,v)}. If no update occurs in an iteration, terminate.

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?
- Bellman-Ford Algorithm:
 - Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, otherwise $d(v) \leftarrow \infty$.
 - Iterate: for each node v ∈ V, for each u such that (u, v) ∈ E, d(v) ← min{d(v), d(u) + c_(u,v)}. If no update occurs in an iteration, terminate.
 - If the program does not terminate after n − 1 rounds, report error (a negative cycle is found).

< □ > < 同 > < 回 > < 回 > < 回 >

- Input: a directed graph G = (V, E), with cost $c_e \ge 0$ for each edge $e \in E$, and no negative cycle. A node $s \in V$.
- Output: for each node t ∈ V, the cost of a minimum-cost path from s to t.
- What goes wrong when there is a negative cycle?
- Bellman-Ford Algorithm:
 - Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, otherwise $d(v) \leftarrow \infty$.
 - Iterate: for each node v ∈ V, for each u such that (u, v) ∈ E, d(v) ← min{d(v), d(u) + c_(u,v)}. If no update occurs in an iteration, terminate.
 - If the program does not terminate after n − 1 rounds, report error (a negative cycle is found).
 - Output d(v) for each $v \in V$.

< □ > < 同 > < 回 > < 回 > < 回 >

Lemma

In a graph containing no negative cycles, between any two nodes there is a minimum-cost path consisting of at most n - 1 edges.

Lemma

In a graph containing no negative cycles, between any two nodes there is a minimum-cost path consisting of at most n - 1 edges.

Proof.

Take any minimum-cost path from s to t. If the path passes a node v twice, the part of the path between these is a cycle. Removing this cycle will not increase the total cost. Repeat this procedure until the path passes each node at most once.

• By induction.

3

Image: Image:

- By induction.
- (Introduce additional notation for clarity:) let $d_i(v)$ be the value of d(v) after the *i*-th iteration of the algorithm.

- By induction.
- (Introduce additional notation for clarity:) let $d_i(v)$ be the value of d(v) after the *i*-th iteration of the algorithm.
- Induction hypothesis: for each v ∈ V, d_i(v) is no larger than the cost of a minimum-cost path from s to v using at most i + 1 edges.

- By induction.
- (Introduce additional notation for clarity:) let $d_i(v)$ be the value of d(v) after the *i*-th iteration of the algorithm.
- Induction hypothesis: for each v ∈ V, d_i(v) is no larger than the cost of a minimum-cost path from s to v using at most i + 1 edges.
- For all i, $d_i(v)$ is the cost of an actual path from s to v.

- By induction.
- (Introduce additional notation for clarity:) let $d_i(v)$ be the value of d(v) after the *i*-th iteration of the algorithm.
- Induction hypothesis: for each v ∈ V, d_i(v) is no larger than the cost of a minimum-cost path from s to v using at most i + 1 edges.
- For all i, $d_i(v)$ is the cost of an actual path from s to v.
- Combining the lemma, when there is no negative cycle, after at most n-1 steps, d(v) is the cost of a minimum-cost path.

- By induction.
- (Introduce additional notation for clarity:) let $d_i(v)$ be the value of d(v) after the *i*-th iteration of the algorithm.
- Induction hypothesis: for each v ∈ V, d_i(v) is no larger than the cost of a minimum-cost path from s to v using at most i + 1 edges.
- For all i, $d_i(v)$ is the cost of an actual path from s to v.
- Combining the lemma, when there is no negative cycle, after at most n-1 steps, d(v) is the cost of a minimum-cost path.
- Running time: O(mn), i.e., $O(|V| \cdot |E|)$.

• Implementation of Dijkstra using priority queue

- Implementation of Dijkstra using priority queue
- Running time: $O(m \log n)$.