The MAX 3-SAT problem:

- Input: A 3-SAT instance, with *n* variables x_1, \ldots, x_n , and *m* clauses C_1, \cdots, C_m , each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.

The MAX 3-SAT problem:

- Input: A 3-SAT instance, with *n* variables x_1, \ldots, x_n , and *m* clauses C_1, \cdots, C_m , each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.
- A randomized algorithm: set each variable to be TRUE with probability $\frac{1}{2}$ (and FALSE with probability $\frac{1}{2}$).

The MAX 3-SAT problem:

- Input: A 3-SAT instance, with *n* variables x_1, \ldots, x_n , and *m* clauses C_1, \cdots, C_m , each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.
- A randomized algorithm: set each variable to be TRUE with probability $\frac{1}{2}$ (and FALSE with probability $\frac{1}{2}$).
- Claim: In expectation, $\frac{7}{8}m$ clauses are satisfied.

• Let Y_i be the indicator variable for the event that the *i*-th clause is satisfied.

Image: Image:

- Let Y_i be the indicator variable for the event that the *i*-th clause is satisfied.
- Then the total number of satisfied clauses is $Y := \sum_i Y_i$, and $\mathbf{E}[Y_i] = \Pr[C_i \text{ satisfied}] = \frac{7}{8}$.

- Let Y_i be the indicator variable for the event that the *i*-th clause is satisfied.
- Then the total number of satisfied clauses is $Y := \sum_{i} Y_{i}$, and $\mathbf{E}[Y_{i}] = \mathbf{Pr}[C_{i} \text{ satisfied}] = \frac{7}{8}$.
- By linearity of expectation,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i} Y_{i}\right] = \sum_{i} \mathbf{E}[Y_{i}] = \frac{7}{8}m.$$

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum".

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum". $E[Y] \geq \frac{7}{8}m \Rightarrow$ with some assignment, the value of Y is at least $\frac{7}{8}m$.

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum". $\mathbf{E}[Y] \geq \frac{7}{8}m \Rightarrow$ with some assignment, the value of Y is at least $\frac{7}{8}m$.

Remark

This is an example of the *probabilistic method*: showing the existence of an object by showing that it occurs with positive probability (often in a constructed probability space).