Setup and the algorithm

The MAX 3-SAT problem:

- Input: A 3-SAT instance, with n variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \cdots, C_{m}, each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.

Setup and the algorithm

The MAX 3-SAT problem:

- Input: A 3-SAT instance, with n variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \cdots, C_{m}, each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.
- A randomized algorithm: set each variable to be TRUE with probability $\frac{1}{2}$ (and FALSE with probability $\frac{1}{2}$).

Setup and the algorithm

The MAX 3-SAT problem:

- Input: A 3-SAT instance, with n variables x_{1}, \ldots, x_{n}, and m clauses C_{1}, \cdots, C_{m}, each having three literals formed from distinct variables.
- Output: a truth assignment to the variables that satisfies as many clauses as possible.
- A randomized algorithm: set each variable to be TRUE with probability $\frac{1}{2}$ (and FALSE with probability $\frac{1}{2}$).
- Claim: In expectation, $\frac{7}{8} m$ clauses are satisfied.

Analysis

- Let Y_{i} be the indicator variable for the event that the i-th clause is satisfied.

Analysis

- Let Y_{i} be the indicator variable for the event that the i-th clause is satisfied.
- Then the total number of satisfied clauses is $Y:=\sum_{i} Y_{i}$, and $\mathbf{E}\left[Y_{i}\right]=\operatorname{Pr}\left[C_{i}\right.$ satisfied $]=\frac{7}{8}$.

Analysis

- Let Y_{i} be the indicator variable for the event that the i-th clause is satisfied.
- Then the total number of satisfied clauses is $Y:=\sum_{i} Y_{i}$, and $\mathbf{E}\left[Y_{i}\right]=\operatorname{Pr}\left[C_{i}\right.$ satisfied $]=\frac{7}{8}$.
- By linearity of expectation,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i} Y_{i}\right]=\sum_{i} \mathbf{E}\left[Y_{i}\right]=\frac{7}{8} m
$$

Consequence

Proposition

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Consequence

Proposition

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum".

Consequence

Proposition

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum". $\mathbf{E}[Y] \geq \frac{7}{8} m \Rightarrow$ with some assignment, the value of Y is at least $\frac{7}{8} m$.

Consequence

Proposition

Given any 3-SAT instance, there is a truth assignment that satisfies at least $\frac{7}{8}$ of the clauses.

Proof: "Expectation/average \leq maximum".
$\mathbf{E}[Y] \geq \frac{7}{8} m \Rightarrow$ with some assignment, the value of Y is at least $\frac{7}{8} m$.

Remark

This is an example of the probabilistic method: showing the existence of an object by showing that it occurs with positive probability (often in a constructed probability space).

