
The set cover problem

Decision version: Given sets S1, · · · ,Sn and an integer k > 0, can we

pick at most k sets among the given n sets so that their union is

U := ∪iSi?

Optimization version: Given sets S1, · · · ,Sn with nonnegative weights

w1, . . . ,wn, �nd a set cover that minimizes the total cost.

Final example of greedy approximation algorithm, with a hint at the

pricing method.

A natural greedy approach: for each set Si , de�ne its per-item cost to

be wi/|Si |.
Intuitively picking sets with small per-item cost is a good idea. We

just need to update the �e�ective� per-item cost as we go.
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The greedy algorithm

Initialize R ← U, C ← ∅. (R records what has not been covered, and

C records the set cover we construct.)

While R 6= ∅, do:
Pick the Si∗ that minimzes wi/|Si ∩ R|.
C ← C ∪ {i∗},R ← R − Si∗ .
For each element s ∈ Si∗ ∩ R, record cs = wi∗/|Si∗ ∩ R|. (For analysis)

Return C (which contains indices of the sets we pick).

Analysis: Lower bound OPT by the sum of per-item costs it must pay.

Starting point: say S1 is the �rst set picked by Greedy, then we know:

Intuitively (and not rigorously), Greedy paid the least possible per-item

cost for the items in S1, at least for that step;

Formally,

w1

|S1|
≤ OPT

|U|
.
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Proof of �rst statement

Proposition

Let S1 be the �rst step picked by Greedy, then w1
|S1| ≤

OPT
|U| .

Intuition: OPT
|U| is the average per-item cost paid by the optimal cover; it

can't be smaller than the least per-item cost we start with, i.e., �average ≥
minimum�.

Proof.

Let C ∗ be the optimal set cover, then

OPT

|U|
=

∑
i∈C∗ wi

|U|
≥

∑
i∈C∗ wi∑
i∈C∗ |Si |

=
∑
i∈C∗

wi

|Si |
· |Si |∑

j∈C∗ |Sj |
≥ min

i∈C∗
wi

|Si |
≥ min

i

wi

|Si |
=

w1

|S1|
.

This is a weighted average of the per-item cost for sets in C ∗!
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Generalize the �rst observation

Let C be the �nal output of Greedy, note that its weight is just the sum of

the �e�ective� per-item cost
∑

s∈U cs .

Suppose the items are covered by Greedy in the order s1, . . . , s|U|, then we

have shown cs1 ≤ OPT /|U| � not a bad start.

Proposition

For j = 1, · · · , |U|, csj ≤ OPT
|U|−j+1

.

As a consequence, the cost of C is

|U|∑
j=1

csj ≤
|U|∑
j=1

OPT

|U| − j + 1
= H(|U|) · OPT,

where H(n) := 1+ 1

2
+ · · ·+ 1

n ≈ ln n.
Anecdote: limn→∞(

∑n
k=1

1

k − ln n) ≈ 0.5772 is known as Euler's constant.
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Proof of proposition

Proposition

For j = 1, · · · , |U|, csj ≤ OPT
|U|−j+1

.

Same intuition as before: when sj is being covered, there are at least

|U| − j + 1 elements to cover, and in the optimal solution the �average�

per-item cost is at least OPT /|U| − j + 1.

Proof.

Apply the previous to the sets in C ∗ used to cover the remaining items.

Let Rj be the set of items remaining to be covered (in R) right before

Greedy covers sj , then |Rj | ≥ |U| − j + 1.

Let C ∗j be the sets in the optimal solution used to cover Rj , i.e.,

{i ∈ C ∗ : Si ∩ Rj 6= ∅}.∑
i∈C∗j

wi

|Rj |
≥

∑
i∈C∗j

wi∑
i∈C∗j
|Si ∩ Rj |

=
∑
i∈C∗j

wi

|Si ∩ Rj |
·

|Si ∩ Rj |∑
k∈C∗j

|Sk ∩ Rj |
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Proof continued

Proof (Cont.)

∑
i∈C∗j

wi

|Rj |
≥

∑
i∈C∗j

wi∑
i∈C∗j
|Si ∩ Rj |

=
∑
i∈C∗j

wi

|Si ∩ Rj |
·

|Si ∩ Rj |∑
k∈C∗j

|Sk ∩ Rj |

≥ min
i∈C∗j

wi

|Si ∩ Rj |
≥ min

i :Si∩Rj 6=∅

wi

|Si ∩ Rj |
= csj .

Finally, note that

∑
i∈C∗

j
wi

|Rj | ≤ OPT
|Rj | .
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