Decision version: Given sets S₁, ..., S_n and an integer k > 0, can we pick at most k sets among the given n sets so that their union is U := U_iS_i?

- Decision version: Given sets S₁, ..., S_n and an integer k > 0, can we pick at most k sets among the given n sets so that their union is U := U_iS_i?
- Optimization version: Given sets S_1, \dots, S_n with nonnegative weights w_1, \dots, w_n , find a set cover that minimizes the total cost.

- Decision version: Given sets S₁, ..., S_n and an integer k > 0, can we pick at most k sets among the given n sets so that their union is U := U_iS_i?
- Optimization version: Given sets S_1, \dots, S_n with nonnegative weights w_1, \dots, w_n , find a set cover that minimizes the total cost.
- Final example of greedy approximation algorithm, with a hint at the *pricing method*.

- Decision version: Given sets S₁, ..., S_n and an integer k > 0, can we pick at most k sets among the given n sets so that their union is U := U_iS_i?
- Optimization version: Given sets S_1, \dots, S_n with nonnegative weights w_1, \dots, w_n , find a set cover that minimizes the total cost.
- Final example of greedy approximation algorithm, with a hint at the *pricing method*.
- A natural greedy approach: for each set S_i, define its per-item cost to be w_i/|S_i|.

- Decision version: Given sets S₁, ..., S_n and an integer k > 0, can we pick at most k sets among the given n sets so that their union is U := U_iS_i?
- Optimization version: Given sets S_1, \dots, S_n with nonnegative weights w_1, \dots, w_n , find a set cover that minimizes the total cost.
- Final example of greedy approximation algorithm, with a hint at the *pricing method*.
- A natural greedy approach: for each set S_i, define its per-item cost to be w_i/|S_i|.
- Intuitively picking sets with small per-item cost is a good idea. We
 just need to update the "effective" per-item cost as we go.

 Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.
 - For each element $s \in S_{i^*} \cap R$, record $c_s = w_{i^*}/|S_{i^*} \cap R|$. (For analysis)

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.
 - For each element $s \in S_{i^*} \cap R$, record $c_s = w_{i^*}/|S_{i^*} \cap R|$. (For analysis)
- Return C (which contains indices of the sets we pick).

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.
 - For each element $s \in S_{i^*} \cap R$, record $c_s = w_{i^*}/|S_{i^*} \cap R|$. (For analysis)
- Return C (which contains indices of the sets we pick).

Analysis: Lower bound OPT by the sum of per-item costs it must pay.

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.
 - For each element $s \in S_{i^*} \cap R$, record $c_s = w_{i^*}/|S_{i^*} \cap R|$. (For analysis)
- Return C (which contains indices of the sets we pick).

Analysis: Lower bound OPT by the sum of per-item costs it must pay. Starting point: say S_1 is the first set picked by Greedy, then we know:

 Intuitively (and not rigorously), Greedy paid the least possible per-item cost for the items in S₁, at least for that step;

- Initialize R ← U, C ← Ø. (R records what has not been covered, and C records the set cover we construct.)
- While $R \neq \emptyset$, do:
 - Pick the S_{i^*} that minimzes $w_i/|S_i \cap R|$.
 - $C \leftarrow C \cup \{i^*\}, R \leftarrow R S_{i^*}$.
 - For each element $s \in S_{i^*} \cap R$, record $c_s = w_{i^*}/|S_{i^*} \cap R|$. (For analysis)
- Return C (which contains indices of the sets we pick).

Analysis: Lower bound OPT by the sum of per-item costs it must pay. Starting point: say S_1 is the first set picked by Greedy, then we know:

- Intuitively (and not rigorously), Greedy paid the least possible per-item cost for the items in S₁, at least for that step;
- Formally,

$$\frac{w_1}{|S_1|} \le \frac{\mathsf{OPT}}{|U|}.$$

Proof of first statement

Proposition

Let S_1 be the first step picked by Greedy, then $\frac{w_1}{|S_1|} \leq \frac{\mathsf{OPT}}{|U|}$.

Proof of first statement

Proposition

Let S_1 be the first step picked by Greedy, then $\frac{w_1}{|S_1|} \leq \frac{\text{OPT}}{|U|}$.

Intuition: $\frac{OPT}{|U|}$ is the average per-item cost paid by the optimal cover; it can't be smaller than the least per-item cost we start with, i.e., "average \geq minimum".

Proposition

Let S_1 be the first step picked by Greedy, then $\frac{w_1}{|S_1|} \leq \frac{OPT}{|U|}$.

Intuition: $\frac{OPT}{|U|}$ is the average per-item cost paid by the optimal cover; it can't be smaller than the least per-item cost we start with, i.e., "average \geq minimum".

Proof.

Let C^* be the optimal set cover, then

$$\frac{\mathsf{OPT}}{|U|} = \frac{\sum_{i \in C^*} w_i}{|U|} \ge \frac{\sum_{i \in C^*} w_i}{\sum_{i \in C^*} |S_i|}$$

Proposition

Let S_1 be the first step picked by Greedy, then $\frac{w_1}{|S_1|} \leq \frac{OPT}{|U|}$.

Intuition: $\frac{OPT}{|U|}$ is the average per-item cost paid by the optimal cover; it can't be smaller than the least per-item cost we start with, i.e., "average \geq minimum".

Proof.

Let C^* be the optimal set cover, then

$$\frac{\mathsf{OPT}}{|U|} = \frac{\sum_{i \in C^*} w_i}{|U|} \ge \frac{\sum_{i \in C^*} w_i}{\sum_{i \in C^*} |S_i|}$$
$$= \sum_{i \in C^*} \frac{w_i}{|S_i|} \cdot \frac{|S_i|}{\sum_{j \in C^*} |S_j|}$$

This is a weighted average of the per-item cost for sets in C^* !

Proposition

Let S_1 be the first step picked by Greedy, then $\frac{w_1}{|S_1|} \leq \frac{\text{OPT}}{|U|}$.

Intuition: $\frac{OPT}{|U|}$ is the average per-item cost paid by the optimal cover; it can't be smaller than the least per-item cost we start with, i.e., "average \geq minimum".

Proof.

Let C^* be the optimal set cover, then

$$\frac{\mathsf{OPT}}{|U|} = \frac{\sum_{i \in C^*} w_i}{|U|} \ge \frac{\sum_{i \in C^*} w_i}{\sum_{i \in C^*} |S_i|} \\ = \sum_{i \in C^*} \frac{w_i}{|S_i|} \cdot \frac{|S_i|}{\sum_{j \in C^*} |S_j|} \ge \min_{i \in C^*} \frac{w_i}{|S_i|} \ge \min_i \frac{w_i}{|S_i|} = \frac{w_1}{|S_1|}.$$

Let C be the final output of Greedy, note that its weight is just the sum of the "effective" per-item cost $\sum_{s \in U} c_s$.

Proposition

For $j = 1, \cdots, |U|$, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U| - j + 1}$.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U|-j+1}$.

As a consequence, the cost of C is

$$\sum_{j=1}^{|U|} c_{s_j} \leq \sum_{j=1}^{|U|} \frac{\mathsf{OPT}}{|U|-j+1} = H(|U|) \cdot \mathsf{OPT},$$

where $H(n) \coloneqq 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \ln n$.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U|-j+1}$.

As a consequence, the cost of C is

$$\sum_{j=1}^{|U|} c_{s_j} \leq \sum_{j=1}^{|U|} \frac{\mathsf{OPT}}{|U| - j + 1} = H(|U|) \cdot \mathsf{OPT},$$

where $H(n) \coloneqq 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$. Anecdote: $\lim_{n\to\infty} (\sum_{k=1}^{n} \frac{1}{k} - \ln n) \approx 0.5772$ is known as Euler's constant.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U| - j + 1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U| - j + 1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proof.

Apply the previous to the sets in C^* used to cover the remaining items.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U|-j+1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proof.

Apply the previous to the sets in C^* used to cover the remaining items. Let R_j be the set of items remaining to be covered (in R) right before Greedy covers s_j , then $|R_j| \ge |U| - j + 1$.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U|-j+1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proof.

Apply the previous to the sets in C^* used to cover the remaining items. Let R_j be the set of items remaining to be covered (in R) right before Greedy covers s_j , then $|R_j| \ge |U| - j + 1$. Let C_j^* be the sets in the optimal solution used to cover R_j , i.e., $\{i \in C^* : S_i \cap R_j \ne \emptyset\}$.

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U| - j + 1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proof.

Apply the previous to the sets in C^* used to cover the remaining items. Let R_j be the set of items remaining to be covered (in R) right before Greedy covers s_j , then $|R_j| \ge |U| - j + 1$. Let C_j^* be the sets in the optimal solution used to cover R_j , i.e., $\{i \in C^* : S_i \cap R_j \ne \emptyset\}$.

$$\frac{\sum_{i \in C_j^*} w_i}{|R_j|} \ge \frac{\sum_{i \in C_j^*} w_i}{\sum_{i \in C_j^*} |S_i \cap R_j|} = \sum_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \cdot \frac{|S_i \cap R_j|}{\sum_{k \in C_j^*} |S_k \cap R_j|}$$

Proposition

For
$$j = 1, \cdots, |U|$$
, $c_{s_j} \leq \frac{\mathsf{OPT}}{|U| - j + 1}$.

Same intuition as before: when s_j is being covered, there are at least |U| - j + 1 elements to cover, and in the optimal solution the "average" per-item cost is at least OPT /|U| - j + 1.

Proof.

Apply the previous to the sets in C^* used to cover the remaining items. Let R_j be the set of items remaining to be covered (in R) right before Greedy covers s_j , then $|R_j| \ge |U| - j + 1$. Let C_j^* be the sets in the optimal solution used to cover R_j , i.e., $\{i \in C^* : S_i \cap R_j \ne \emptyset\}$.

$$\frac{\sum_{i \in C_j^*} w_i}{|R_j|} \ge \frac{\sum_{i \in C_j^*} w_i}{\sum_{i \in C_j^*} |S_i \cap R_j|} = \sum_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \cdot \frac{|S_i \cap R_j|}{\sum_{k \in C_j^*} |S_k \cap R_j|}$$

Proof (Cont.)

$$\frac{\sum_{i \in C_j^*} w_i}{|R_j|} \ge \frac{\sum_{i \in C_j^*} w_i}{\sum_{i \in C_j^*} |S_i \cap R_j|} = \sum_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \cdot \frac{|S_i \cap R_j|}{\sum_{k \in C_j^*} |S_k \cap R_j|}$$
$$\ge \min_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \ge \min_{i:S_i \cap R_j \neq \emptyset} \frac{w_i}{|S_i \cap R_j|} = c_{s_j}.$$

э

・ロト ・ 日 ト ・ 目 ト ・

Proof (Cont.)

$$\frac{\sum_{i \in C_j^*} w_i}{|R_j|} \ge \frac{\sum_{i \in C_j^*} w_i}{\sum_{i \in C_j^*} |S_i \cap R_j|} = \sum_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \cdot \frac{|S_i \cap R_j|}{\sum_{k \in C_j^*} |S_k \cap R_j|}$$
$$\ge \min_{i \in C_j^*} \frac{w_i}{|S_i \cap R_j|} \ge \min_{i:S_i \cap R_j \neq \emptyset} \frac{w_i}{|S_i \cap R_j|} = c_{s_j}.$$
Finally, note that $\frac{\sum_{i \in C_j^*} w_i}{|R_j|} \le \frac{\mathsf{OPT}}{|R_j|}.$

・ロト ・ 日 ト ・ 目 ト ・

æ

500