- Review of Quicksort
- Analyze the expected running time of a Las Vegas algorithm using linearity of expectation

- Input: A set S of n integers a_1, \ldots, a_n .
- Output: Sorted array of the *n* integers in increasing order.

- Input: A set S of n integers a_1, \ldots, a_n .
- Output: Sorted array of the *n* integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.

- Input: A set S of n integers a_1, \ldots, a_n .
- Output: Sorted array of the *n* integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make o(n log n) comparisons in the worst case.

- Input: A set S of n integers a_1, \ldots, a_n .
- Output: Sorted array of the *n* integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make $o(n \log n)$ comparisons in the worst case.
- Recall algorithm Quicksort(S): If $|S| \leq 3$, return sorted S. Otherwise, pick an element a_i uniformly at random from S, form two sets: $S^+ := \{a_j : a_j > a_i\}$ and $S^- := \{a_j : a_j < a_i\}$. Return Quicksort(S⁻), a_j , Quicksort(S⁺).

Analysis of Quicksort

Theorem

The expected running time of Quicksort is $O(n \log n)$.

メロト メロト メヨト

Theorem

The expected running time of Quicksort is $O(n \log n)$.

• Observation: Forming S^+ and S^- altogether takes O(n) time.

Image: Image:

Theorem

The expected running time of Quicksort is $O(n \log n)$.

- Observation: Forming S^+ and S^- altogether takes O(n) time.
- Intuition: if a_j always roughly cuts S in the middle, then the running time is roughly $T(n) \approx 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$.

Theorem

The expected running time of Quicksort is O(n log n).

- Observation: Forming S^+ and S^- altogether takes O(n) time.
- Intuition: if a_j always roughly cuts S in the middle, then the running time is roughly $T(n) \approx 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$.

To simplify the presentation, we analyze a variant of Quicksort:

- ModifiedQuicksort(S):
 - If $|S| \leq 3$, return sorted S.
 - Pick an element a_i uniformly at random from S, form two sets: $S^+ := \{a_j : a_j > a_i\}$ and $S^- := \{a_j : a_j < a_i\}$. If $|S^-| < \frac{n}{4}$ or $|S^+| < \frac{n}{4}$, repeat (i.e., pick another a_j .
 - Output ModifiedQuicksort(S^-), a_j , ModifiedQuicksort(S^+).

< □ > < 同 > < 回 > < 回 > < 回 >

First thing: how many a_j 's do we have to try, in expectation, to have $\frac{n}{4} \leq |S^-| \leq \frac{3n}{4}$?

- First thing: how many a_j 's do we have to try, in expectation, to have $\frac{n}{4} \le |S^-| \le \frac{3n}{4}$?
 - Let X be the number of attempts till we succeed.

- First thing: how many a_j 's do we have to try, in expectation, to have $\frac{n}{4} \le |S^-| \le \frac{3n}{4}$?
 - Let X be the number of attempts till we succeed.
 - Each attempt succeds with probability $\frac{1}{2}$.

First thing: how many a_j 's do we have to try, in expectation, to have $\frac{n}{4} \leq |S^-| \leq \frac{3n}{4}$?

- Let X be the number of attempts till we succeed.
- Each attempt succeds with probability $\frac{1}{2}$.
- So **E**[X] = 2.

Second: How do we put together the recursion?

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T\left(\frac{3n}{4}\right) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T\left(\frac{3n}{4}\right) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T(\frac{3n}{4}) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

We should be more careful. Idea: Group the subproblems by their sizes.

• A subproblem is said to be type j if the size of the set it considers is in $(n(\frac{3}{4})^{j+1}, n(\frac{3}{4})^j]$.

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T(\frac{3n}{4}) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

- A subproblem is said to be type j if the size of the set it considers is in $(n(\frac{3}{4})^{j+1}, n(\frac{3}{4})^{j}]$.
- The original problem is of type 0.

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T(\frac{3n}{4}) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

- A subproblem is said to be type j if the size of the set it considers is in $(n(\frac{3}{4})^{j+1}, n(\frac{3}{4})^{j}]$.
- The original problem is of type 0.
- Key observation: after each recursion, the subproblems newly generated are disjoint, and their types are strictly higher.

Second: How do we put together the recursion? What doesn't work: Since both $|S^-|$ and $|S^+|$ are $\leq \frac{3n}{4}$,

$$T(n) \leq 2T(\frac{3n}{4}) + 2n \leq 2\left(n+2\cdot\frac{3n}{4}+4\cdot\frac{3^2n}{4^2}+\cdots\right).$$

- A subproblem is said to be type j if the size of the set it considers is in $(n(\frac{3}{4})^{j+1}, n(\frac{3}{4})^{j}]$.
- The original problem is of type 0.
- Key observation: after each recursion, the subproblems newly generated are disjoint, and their types are strictly higher.
- all subproblems of the same type must be disjoint. So the number of type j subproblems created throughout the algorithm is $\leq (\frac{4}{3})^{j+1}$.

< A[™]

• More concretely, there are k subproblems of type j, where $k \leq (\frac{4}{3})^{j+1}$.

- Total time spent on type j subproblems: O(n).
 - More concretely, there are k subproblems of type j, where $k \leq (\frac{4}{3})^{j+1}$.
 - Let X_i denote the number of attempts in the *i*-th subproblem of type *j*, then $\mathbf{E}[X_i] = 2$.

- More concretely, there are k subproblems of type j, where $k \leq (\frac{4}{3})^{j+1}$.
- Let X_i denote the number of attempts in the *i*-th subproblem of type *j*, then $\mathbf{E}[X_i] = 2$.
- Total running time for type *j* subproblems is at most:

$$\sum_{i=1}^k \left(\frac{3}{4}\right)^j n \operatorname{\mathsf{E}}\left[X_i\right] \leq \left(\frac{4}{3}\right)^{j+1} \cdot \left(\frac{3}{4}\right)^j n \cdot 2 = O(n),$$

where we used linearity of expectation.

- More concretely, there are k subproblems of type j, where $k \leq (\frac{4}{3})^{j+1}$.
- Let X_i denote the number of attempts in the *i*-th subproblem of type *j*, then $\mathbf{E}[X_i] = 2$.
- Total running time for type *j* subproblems is at most:

$$\sum_{i=1}^k \left(\frac{3}{4}\right)^j n \operatorname{\mathsf{E}}\left[X_i\right] \leq \left(\frac{4}{3}\right)^{j+1} \cdot \left(\frac{3}{4}\right)^j n \cdot 2 = O(n),$$

where we used linearity of expectation.

• Number of types: $\leq \log_{\frac{4}{3}} n$.

- More concretely, there are k subproblems of type j, where $k \leq (\frac{4}{3})^{j+1}$.
- Let X_i denote the number of attempts in the *i*-th subproblem of type *j*, then $\mathbf{E}[X_i] = 2$.
- Total running time for type *j* subproblems is at most:

$$\sum_{i=1}^k \left(\frac{3}{4}\right)^j n \operatorname{\mathsf{E}}\left[X_i\right] \leq \left(\frac{4}{3}\right)^{j+1} \cdot \left(\frac{3}{4}\right)^j n \cdot 2 = O(n),$$

where we used linearity of expectation.

- Number of types: $\leq \log_{\frac{4}{2}} n$.
- Total running time $O(n \log n)$.