
Learning Goals

Review of Quicksort

Analyze the expected running time of a Las Vegas algorithm using

linearity of expectation

April 4, 2019 1 / 6

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,

running time O(n log n).

Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.

Recall algorithm Quicksort(S): If |S | ≤ 3, return sorted S . Otherwise,
pick an element ai uniformly at random from S , form two sets:

S+ := {aj : aj > ai} and S− := {aj : aj < ai}. Return Quicksort(S−),
aj , Quicksort(S

+).

April 4, 2019 2 / 6

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,

running time O(n log n).

Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.

Recall algorithm Quicksort(S): If |S | ≤ 3, return sorted S . Otherwise,
pick an element ai uniformly at random from S , form two sets:

S+ := {aj : aj > ai} and S− := {aj : aj < ai}. Return Quicksort(S−),
aj , Quicksort(S

+).

April 4, 2019 2 / 6

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,

running time O(n log n).

Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.

Recall algorithm Quicksort(S): If |S | ≤ 3, return sorted S . Otherwise,
pick an element ai uniformly at random from S , form two sets:

S+ := {aj : aj > ai} and S− := {aj : aj < ai}. Return Quicksort(S−),
aj , Quicksort(S

+).

April 4, 2019 2 / 6

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,

running time O(n log n).

Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.

Recall algorithm Quicksort(S): If |S | ≤ 3, return sorted S . Otherwise,
pick an element ai uniformly at random from S , form two sets:

S+ := {aj : aj > ai} and S− := {aj : aj < ai}. Return Quicksort(S−),
aj , Quicksort(S

+).

April 4, 2019 2 / 6

Analysis of Quicksort

Theorem

The expected running time of Quicksort is O(n log n).

Observation: Forming S+ and S− altogether takes O(n) time.

Intuition: if aj always roughly cuts S in the middle, then the running

time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).

To simplify the presentation, we analyze a variant of Quicksort:

Modi�edQuicksort(S):

If |S | ≤ 3, return sorted S .
Pick an element ai uniformly at random from S , form two sets:
S+ := {aj : aj > ai} and S− := {aj : aj < ai}. If |S−| < n

4
or

|S+| < n
4
, repeat (i.e., pick another aj .

Output Modi�edQuicksort(S−), aj , Modi�edQuicksort(S+).

April 4, 2019 3 / 6

Analysis of Quicksort

Theorem

The expected running time of Quicksort is O(n log n).

Observation: Forming S+ and S− altogether takes O(n) time.

Intuition: if aj always roughly cuts S in the middle, then the running

time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).

To simplify the presentation, we analyze a variant of Quicksort:

Modi�edQuicksort(S):

If |S | ≤ 3, return sorted S .
Pick an element ai uniformly at random from S , form two sets:
S+ := {aj : aj > ai} and S− := {aj : aj < ai}. If |S−| < n

4
or

|S+| < n
4
, repeat (i.e., pick another aj .

Output Modi�edQuicksort(S−), aj , Modi�edQuicksort(S+).

April 4, 2019 3 / 6

Analysis of Quicksort

Theorem

The expected running time of Quicksort is O(n log n).

Observation: Forming S+ and S− altogether takes O(n) time.

Intuition: if aj always roughly cuts S in the middle, then the running

time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).

To simplify the presentation, we analyze a variant of Quicksort:

Modi�edQuicksort(S):

If |S | ≤ 3, return sorted S .
Pick an element ai uniformly at random from S , form two sets:
S+ := {aj : aj > ai} and S− := {aj : aj < ai}. If |S−| < n

4
or

|S+| < n
4
, repeat (i.e., pick another aj .

Output Modi�edQuicksort(S−), aj , Modi�edQuicksort(S+).

April 4, 2019 3 / 6

Analysis of Quicksort

Theorem

The expected running time of Quicksort is O(n log n).

Observation: Forming S+ and S− altogether takes O(n) time.

Intuition: if aj always roughly cuts S in the middle, then the running

time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).

To simplify the presentation, we analyze a variant of Quicksort:

Modi�edQuicksort(S):

If |S | ≤ 3, return sorted S .
Pick an element ai uniformly at random from S , form two sets:
S+ := {aj : aj > ai} and S− := {aj : aj < ai}. If |S−| < n

4
or

|S+| < n
4
, repeat (i.e., pick another aj .

Output Modi�edQuicksort(S−), aj , Modi�edQuicksort(S+).

April 4, 2019 3 / 6

Analysis

First thing: how many aj 's do we have to try, in expectation, to have
n
4
≤ |S−| ≤ 3n

4
?

Let X be the number of attempts till we succeed.

Each attempt succeds with probability 1

2
.

So E[X] = 2.

April 4, 2019 4 / 6

Analysis

First thing: how many aj 's do we have to try, in expectation, to have
n
4
≤ |S−| ≤ 3n

4
?

Let X be the number of attempts till we succeed.

Each attempt succeds with probability 1

2
.

So E[X] = 2.

April 4, 2019 4 / 6

Analysis

First thing: how many aj 's do we have to try, in expectation, to have
n
4
≤ |S−| ≤ 3n

4
?

Let X be the number of attempts till we succeed.

Each attempt succeds with probability 1

2
.

So E[X] = 2.

April 4, 2019 4 / 6

Analysis

First thing: how many aj 's do we have to try, in expectation, to have
n
4
≤ |S−| ≤ 3n

4
?

Let X be the number of attempts till we succeed.

Each attempt succeds with probability 1

2
.

So E[X] = 2.

April 4, 2019 4 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Analysis

Second: How do we put together the recursion?

What doesn't work: Since both |S−| and |S+| are ≤ 3n
4
,

T (n) ≤ 2T (
3n

4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42
+ · · ·

)
.

We should be more careful. Idea: Group the subproblems by their sizes.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4
)j+1, n(3

4
)j].

The original problem is of type 0.

Key observation: after each recursion, the subproblems newly

generated are disjoint, and their types are strictly higher.

all subproblems of the same type must be disjoint. So the number of

type j subproblems created throughout the algorithm is ≤ (4
3
)j+1.

April 4, 2019 5 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.

Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ (4
3
)j+1.

Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3

4

)j

nE [Xi] ≤
(
4

3

)j+1

·
(
3

4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).

April 4, 2019 6 / 6

	Quick Sort

