Learning Goals

@ Review of Quicksort

@ Analyze the expected running time of a Las Vegas algorithm using
linearity of expectation

April 4, 2019 1/6

Setup and the algorithm

@ Input: A set S of nintegers ay,...,a,.

o Output: Sorted array of the n integers in increasing order.

April 4, 2019

Setup and the algorithm

@ Input: A set S of nintegers ay,...,a,.
o Output: Sorted array of the n integers in increasing order.

@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

April 4, 2019 2/6

Setup and the algorithm

Input: A set S of n integers a1, ..., ap.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

Recall lower bound: no deterministic algorithm can make o(nlog n)
comparisons in the worst case.

April 4, 2019 2/6

Setup and the algorithm

@ Input: A set S of nintegers ay,...,a,.

o Output: Sorted array of the n integers in increasing order.

@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

@ Recall lower bound: no deterministic algorithm can make o(nlog n)
comparisons in the worst case.

@ Recall algorithm Quicksort(S): If |S| < 3, return sorted S. Otherwise,
pick an element a; uniformly at random from S, form two sets:
St:={aj:aj>a;} and S™ = {a; : a; < a;}. Return Quicksort(5~),
aj, Quicksort(ST).

April 4, 2019 2/6

Analysis of Quicksort
The expected running time of Quicksort is O(nlog n). l

April 4, 2019

Analysis of Quicksort
The expected running time of Quicksort is O(nlog n). l

@ Observation: Forming ST and S~ altogether takes O(n) time.

April 4, 2019 3/6

Analysis of Quicksort
The expected running time of Quicksort is O(nlog n). \

@ Observation: Forming ST and S~ altogether takes O(n) time.

o Intuition: if a; always roughly cuts S in the middle, then the running
time is roughly T(n) = 2T(n/2) + O(n) = T(n) = O(nlog n).

April 4, 2019 3/6

Analysis of Quicksort
The expected running time of Quicksort is O(nlog n). \

@ Observation: Forming ST and S~ altogether takes O(n) time.

o Intuition: if a; always roughly cuts S in the middle, then the running
time is roughly T(n) = 2T(n/2) + O(n) = T(n) = O(nlog n).

To simplify the presentation, we analyze a variant of Quicksort:

e ModifiedQuicksort(S):

o If |S| < 3, return sorted S.

e Pick an element a; uniformly at random from S, form two sets:
St ={aj:a>a}and S~ ={aj:a;<a} If|ST|<]or
|S*| < 4. repeat (i.e., pick another a;.

o Output ModifiedQuicksort(S™), a;, ModifiedQuicksort(S™).

April 4, 2019 3/6

First thing: how many a;'s do we have to try, in expectation, to have
AU &

April 4, 2019 4/6

First thing: how many a;'s do we have to try, in expectation, to have
AU &

@ Let X be the number of attempts till we succeed.

April 4, 2019 4/6

First thing: how many a;'s do we have to try, in expectation, to have
AU &

@ Let X be the number of attempts till we succeed.

@ Each attempt succeds with probability %

April 4, 2019 4/6

First thing: how many a;'s do we have to try, in expectation, to have
i<l g

@ Let X be the number of attempts till we succeed.

@ Each attempt succeds with probability %

e So E[X]=2.

April 4, 2019 4/6

Second: How do we put together the recursion?

April 4, 2019 5/6

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

2
T(n)§2T(34n)+2n§2< 4+ 2. 3l+4 37_1_)

April 4, 2019

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

T(n)SQT(4)+2n§2<n—|—2~4-|-4..42_f_...)'

We should be more careful. Idea: Group the subproblems by their sizes.

April 4, 2019 5/6

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

T(n)SQT(4)+2n§2<n—|—2~4-|-4..42_f_...)'

We should be more careful. Idea: Group the subproblems by their sizes.

@ A subproblem is said to be type j if the size of the set it considers is in

(n(3Y*, n(3Y1.

April 4, 2019 5/6

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

T(n)SQT(4)+2n§2<n—|—2~4-|-4..42_f_...)'

We should be more careful. Idea: Group the subproblems by their sizes.

@ A subproblem is said to be type j if the size of the set it considers is in
(n(3Y T n(3Y]-

@ The original problem is of type 0.

April 4, 2019 5/6

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

T(n)SQT(4)+2n§2<n—|—2~4-|-4..42_f_...)'

We should be more careful. Idea: Group the subproblems by their sizes.
@ A subproblem is said to be type j if the size of the set it considers is in
(n(Y 1, n(3Y]
@ The original problem is of type 0.

o Key observation: after each recursion, the subproblems newly
generated are disjoint, and their types are strictly higher.

April 4, 2019 5/6

Second: How do we put together the recursion?
What doesn’t work: Since both |S™| and |S*] are < 32,

T(n)SQT(4)+2n§2<n—|—2~4-|-4..42_f_...)'

We should be more careful. Idea: Group the subproblems by their sizes.

@ A subproblem is said to be type j if the size of the set it considers is in
(n(3Y T n(3Y]-
@ The original problem is of type 0.

o Key observation: after each recursion, the subproblems newly
generated are disjoint, and their types are strictly higher.

@ all subproblems of the same type must be disjoint. So the number of
type j subproblems created throughout the algorithm is < (%)”1.

April 4, 2019 5/6

Final steps

@ Total time spent on type j subproblems: O(n).

April 4, 2019

Final steps

@ Total time spent on type j subproblems: O(n).
o More concretely, there are k subproblems of type j, where k < ()12,

April 4, 2019

Final steps

@ Total time spent on type j subproblems: O(n).

o More concretely, there are k subproblems of type j, where k < ()12,
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X,] =2.

April 4, 2019

Final steps

@ Total time spent on type j subproblems: O(n).

o More concretely, there are k subproblems of type j, where k < ()12,

o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X,] =2.

e Total running time for type j subproblems is at most:

53 < (3 () 2o

i=1

where we used linearity of expectation.

April 4, 2019 6/6

Final steps

@ Total time spent on type j subproblems: O(n).

o More concretely, there are k subproblems of type j, where k < ()12,

o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X,] =2.

e Total running time for type j subproblems is at most:

) e (5 (2o

where we used linearity of expectation.

@ Number of types: < loga n.
3

April 4, 2019 6/6

Final steps

@ Total time spent on type j subproblems: O(n).
o More concretely, there are k subproblems of type j, where k < ()12,
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X,] =2.
e Total running time for type j subproblems is at most:

k J Jj+1 J
3 4 3
— E X,' < - . - . 2 - O 5
Y(3) reva=(5) - (3) 2o
where we used linearity of expectation.

@ Number of types: < loga n.
3

e Total running time O(nlog n).

April 4, 2019 6/6

	Quick Sort

