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Abstract—This paper studies how the efficiency of an online
platform is impacted by the degree to which access of platform
participants is open or controlled. The study is motivated by
an emerging trend within platforms to impose increasingly fine-
grained control over the options available to platform partici-
pants. While early online platforms allowed open access, e.g.,
Ebay allows any seller to interact with any buyer; modern
platforms often impose matches directly, e.g., Uber directly
matches drivers to riders. This control is performed with the
goal of achieving more efficient market outcomes. However, the
results in this paper highlight that imposing matches may create
new strategic incentives that lead to increased inefficiency. In
particular, in the context of networked Cournot competition, we
prove that open access platforms guarantee social welfare within
7/16 of the optimal; whereas controlled allocation platforms can
have social welfare unboundedly worse than optimal.

I. INTRODUCTION

Over the last decade, online marketplaces have reshaped
whole industries, with internet platform companies leading
the way [29]. Platform companies such as Facebook, Uber,
Amazon, Ebay, etc. now make up a 3 trillion dollar market in
the US alone, and it is growing quickly [1].

The rise of the platform economy [29] brings with it a
wide variety of engineering, economic and social challenges.
Historically, markets have been slow to evolve, and finding the
“right” trading partners has been a daunting task. However,
the integration of networks and information technology into
marketplaces has led to complex platforms that facilitate
matches among participants. There is now an unprecedented
level of control over the operation of these markets. Companies
are engineering platforms to control the flow of information,
recommend matches, and enforce prices and terms of trade.
As such, the decisions made in the design of the platforms
create intricate and subtle interactions between computational
constraints, network constraints, and market outcomes.

At the heart of platform design is the design of the matching
algorithm that determines the matches between firms (sellers)
and consumers (buyers). Platforms today have a wide variety
of approaches for matching. Some platforms, such as Etsy,
Airbnb, Ebay, and Upwork, follow an open access model –
they provide information on all candidate matches, allowing
the sellers and the buyers to make their own choices about how

to match [32, 23, 22, 25]. On the other extreme, platforms like
Uber follow a controlled allocation model — they provide no
information about the candidate matches, only presenting a
specific opportunity for a match [15, 13, 38, 28]. In between,
there are discriminatory access platforms, such as Amazon,
which impose constraints on the firms limiting which markets
they can enter; e.g., only sellers with low enough prices and
high enough reviews are eligible to be shown in the Buy Box,
the default seller on a product’s front page. Since about 80%
of customers do not look beyond the Buy Box, in effect, they
are only accessible to the eligible sellers [16, 37, 41, 5].

These contrasting design choices highlight interesting trade-
offs in terms of the interaction between incentives and opti-
mization. In particular, over the past decade there has been
a noticeable shift from open access designs toward discrimi-
natory access and controlled allocation designs. Uber, which
uses a controlled allocation design, is a good exemplar of
the current trends in platform design. Uber uses a highly
optimized matching algorithm to determine matches between
drivers and riders in addition to the price paid for the route.
Riders and drivers are not alerted to candidate matches,
only to the specific match that Uber determines is “optimal”
[15, 13, 38, 28].

It is easy to understand the intuition leading to this shift.
Platforms have an incentive to optimize social welfare in order
to create strong positive network effects to feed growth, e.g.,
increasing customer satisfaction leads to growth in the number
of customers, which makes it more desirable for firms to join
the platform, and vice versa. Thus, it is highly desirable to
ensure that matches are made so as to maximize social welfare,
and thus network effects. Another recent work in this area [8]
looked at a similar problem, in a slightly different setting, with
the aim of maximizing transaction volume.

It is natural to assume that open access platforms fail at
this goal. Allowing firms and consumers to make their own
matches means that inefficient matches are possible, due to the
strategic incentives of each participant. Naturally, platforms
feel that they can match more optimally, and so choose to
either limit the matches available (discriminatory access) or
enforce specific “optimal” matches (controlled allocation).

While the above discussion is intuitive, it misses one crucial



point. The “optimal” matches a platform computes are not
truly optimal because the fact that matches are limited or
enforced impacts the incentives of the firms in the marketplace.
In particular, this may cause it to be less desirable to produce,
and thus there could be less participation in the marketplace
as a result, which leads to social welfare loss.

Contributions of this paper: This paper addresses the ques-
tion of whether platforms that control access lead to more
efficient markets or not. That is, how does the inefficiency
created by strategic choices of firms given an open access
platform compare with that of a controlled allocation platform?

The main results in this paper show, perhaps counterintu-
itively, that open access designs are near optimal, achieving
social welfare no worse than 7/16 of the social optimal
assignment; whereas controlled allocation designs can be
unboundedly worse than the social optimal assignment.

More specifically, the results in this paper contrast open
access, discriminatory access, and controlled allocation plat-
forms in the context of networked Cournot competition, a
classical model of competition in networked markets. We
adopt the model of [2, 9] to characterize competition and
introduce novel models of platforms within this framework.

In the context of this model, this paper makes three main
contributions. First, in Section III, we study open access
platform designs and prove our main result: that open access
designs achieve social welfare no worse than 7/16 of the
social optimal assignment (Theorem 3), regardless of the size
and makeup of the market. This result is the main technical
contribution of the paper and is the first “price of anarchy”
bound for networked Cournot competition. It extends the price
of anarchy bound of Johari and Tsitsiklis [27] for a single
Cournot market to multiple, networked markets using a novel
technique based on bounding the production costs using terms
proportional to the consumer welfare.

Second, in Section IV, we study discriminatory access
platform designs. Clearly, the optimal discriminatory access
design can be no worse than the open access design, so
the question is what improvement is possible given the extra
complexity involved. Our analysis highlights two key points:
(i) determining the optimal discriminatory design is a very
challenging optimization problem, and (ii) the gain of the
optimal design over the open-access design is typically small,
less than 3% in the simulations we perform; theoretically, our
efficiency bound for the open access platforms also imply that
introducing discriminatory access cannot improve the welfare
over the open access by more than a factor of 16

7 .
Third, in Section V, we study controlled allocation plat-

forms and show that, in the worst case, controlled allocation
can lead to equilibrium outcomes with loss in social welfare
that grows linearly in the number of markets in the system
(Theorem 8). Thus, the efficiency loss in controlled allocation
platforms can be unbounded.

The combination of these three results highlights an inherent
danger associated with the current trend in platform design
toward exerting more control over matches. While this seem-
ingly allows fine-grained optimization over the matches, as a

byproduct it creates incentives that impact the participation
of firms in terms of production, leading to a possibility
of increased inefficiency if not done carefully. Open access
platform designs avoid this danger.

Related work: Our work builds on, and contributes to, two
related literatures: a) works studying the design of platforms
and b) works studying competition in networked markets.

a) Platform design: The proliferation of online platforms
has spurred on a new literature focused on understanding the
impacts of the design of platforms on their success. Work in
this literature has focused on a variety of topics, including
pricing [42], insulation [43] and competition [7], to list a few.
Particularly relevant to our work are recent empirical findings
that show significant price dispersion in online marketplaces
[20], which in turn drives platforms to focus on differentiated
products in order to create distinct consumer markets [19].
Such results highlight the need to study platforms in the
context of networked competition.

Our focus is on distinguishing platforms based on the level
of access provided. While some platforms encourage open
access, e.g. Airbnb, others, e.g., Uber, use some sort of black-
box mechanism, trusting that their mechanism brings out the
most value. Algorithmic matching, exemplified by Amazon’s
Buy Box, leads to discriminatory access, a middle ground
between the two extremes.

To this point, no analytic work has studied the impact
of strategic incentives created by discriminatory access and
controlled allocation in online platforms. This paper provides
the first such study, using the classical model of networked
Cournot competition as the setting.

b) Competition in networked settings: Models of com-
petition in networked settings have received considerable at-
tention in recent years. These models come in various forms,
including networked Bertrand competition, e.g., [24, 6, 14, 4],
networked Cournot competition, e.g., [9, 2, 26], and various
other non-cooperative bargaining games where agents can
trade via bilateral contracts and a network determines the set
of feasible trades, e.g., [21, 18, 33, 3, 31].

Our paper fits squarely into the emerging literature on
networked Cournot competition. The model of networked
competition we study has been considered previously, begin-
ning with [11] and continuing through [26, 9, 2, 10, 12]. The
contribution of our work comes in two forms. First, the papers
above focus on characterizing the existence and uniqueness of
Nash equilibria [26, 9, 10, 12] and, more recently, the com-
plexity of computing equilibrium outcomes [2]. In contrast,
our work focuses on characterizing the economic efficiency of
the equilibrium outcomes as compared to the social welfare
maximizer, i.e., characterizing the so-called price of anarchy.
Additionally, with the exception of [12] (which does not
study the economic efficiency of the market), the literature on
networked Cournot competition focuses on situations where
firms operate independently, without governance, while we
consider situations where a platform may exert control over
the matches between firms and markets.



The technical work in our paper is most closely related
to Johari and Tsitsiklis [27], who studied the economic effi-
ciency of Cournot competition in a single market setting, as
opposed to the networked market setting we consider. Due
to the relative simplicity of a single market, [27] was able
to exhaustively search the parameter space and solve for the
worst case bound; this approach is not viable in more complex
multi-market settings.

II. PRELIMINARIES

In this paper we contrast the efficiency of three different
approaches (illustrated in Figure 1) for matching and pricing
in the design of online platforms:

(i) Open access platforms allow any firm to access any
market, without constraint. These are exemplified by
platforms such as Etsy, Airbnb, Ebay, and Upwork.

(ii) Discriminatory access platforms limit the set of markets
accessible by each firm as a result of properties of the
firms or markets, e.g., the quality or cost of the firm
in that market. These are exemplified by the Buy Box
at Amazon, which shows only sellers with low enough
cost and high enough quality [16].

(iii) Controlled allocation platforms enforce a strict matching
between firms and markets. These are exemplified by the
automatic matching performed by Uber, which directly
matches drivers with riders without providing a list of
alternatives [15].

To contrast these three styles of platform design, we use a
classic economic model of competition in networked markets:
networked Cournot competition. In the following, we first
introduce networked Cournot competition and then describe
the three platform models we consider.

A. Networked Cournot Competition

This paper adopts the model of networked Cournot compe-
tition introduced by Bimpikis et al. [9] and Abolhassani et al.
[2]. This model generalizes classical Cournot competition,
in which firms compete in a single market. The defining
characteristic of Cournot competition is that firms compete by
choosing quantities, and the eventual price is determined by
the aggregate supply. This is in contrast to price-competition,
a.k.a. Bertrand competition.

Our interest is in Cournot competition in a networked
setting. Specifically, we consider a set M of m markets and
a set F of n firms that are connected by a set of edges
E ⊆ F ×M , where (i, j) ∈ E represents firm i having access
to market j.

For (i, j) ∈ E , the production qij ≥ 0 is the supply
from firm i to market j. The total production of a firm i
is si =

∑
j:(i,j)∈E qij , and the total supply at market j

is dj =
∑
i:(i,j)∈E qij . (One can consider qij = 0 for all

(i, j) /∈ E , and from this point on we will drop the range
(i, j) ∈ E for summations.) We use q to represent the vector
of productions (qij)(i,j)∈E . Additionally, we use s−i to denote
the vector (s1, . . . , si−1, si+1, . . . , sn), and similarly for q−i,j .

The price in a market is determined by the total supply
through a demand function. Following [9], we focus on linear
inverse demand throughout this paper. Specifically, the price
pj at market j is given by αj − βjdj , where αj and βj are
market specific parameters. The demand curve of market j
characterizes the price pj as a function of demand dj . As in
[9], a firm experiences a production cost that is quadratic in
its total production, i.e., firm i’s cost is cis2i , with ci being
a firm specific parameter. Note that analytic characterizations
outside of linear demand and quadratic production costs are
typically difficult. See [2] for a discussion.

The efficiency of a market is measured by the social welfare.
Given production q, the social welfare is

SW(q) =
∑
j

dj

(
αj −

βjdj
2

)
−
∑
i

cis
2
i . (1)

In (1), the first term for each market j, sometimes called the
consumer welfare, is the area under the demand curve from 0
to dj . If production is costless, this term would be the social
value created by the production.

A production vector q is socially optimal if it solves the
optimization problem maxq SW(q). We use q∗ to denote a
solution to the problem. SW(q∗) is the maximum welfare
achievable under a central planner that can control all the
productions.

At an optimal solution, the marginal welfare with respect
to each positive production q∗ij should be 0. Note that the
marginal consumer welfare is just the price at the market.
Where q∗ij is 0, it should be that the price at market j is lower
than the marginal cost of firm i. Since SW(q) is concave in q,
these first order conditions fully characterize the solution to
the maximization problem, giving the following lemma.

Lemma 1. A production vector q∗ is socially optimal if and
only if the following is true: either q∗ij = 0 and pj ≤ 2cisi, or

0 =
∂ SW

∂qij
= pj(dj)− 2cisi (2)

B. Price of Anarchy

The optimal welfare SW(q∗) is a benchmark, but in the
settings we consider there is no social planner that can control
the behavior of the firms. Instead, firms have the freedom
to choose their production levels so as to maximize their
individual profits. Concretely, given production vector q, the
profit of a firm i is πi(q) =

∑
j qijpj(dj) − cis

2
i . We will

consider Nash equilibria of the platform: in an equilibrium, no
firm can unilaterally improve its profit when the productions
of the other firms remain the same.1

In general, the social welfare in an equilibrium is less than
the optimal. Following a large literature in algorithmic game
theory [e.g. 30, 36, 35, 17], we quatify the inefficiency of
the equilibria by the notion of Price of Anarchy. The price of
anarchy of a platform is the ratio between the optimal welfare

1Note that we focus on pure Nash equilibria only, since a mixed Nash
equilibrium where firms randomize their supplies is unnatural.
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Fig. 1. From left to right: (a) Open Access Platforms allow firms to participate in any of the markets at any quantity they desire. (b) Discriminatory Access
Platforms constrain the markets in which firms can participate (the red edges). (c) Controlled Allocation Platform match firms’ productions and the markets.
The firms still decide their total supply.

SW(q∗) and the smallest welfare of any Nash equilibrium.
The closer to 1 this ratio is, the more efficient the platform is.
We study the price of anarchy of platforms under three types
of access control.

C. Platform Models

We consider three styles of platform design in this paper:
open access, discriminatory access, and controlled allocation.

1) Open Access Platforms: An open access platform allows
access of all markets to all firms, and each firm i is able to
decide its production qij for each market j. When all firms
make this decision to maximize their individual profits, a game
is formulated among them. Bimpikis et al. [9] showed that, in
general, this game has a unique pure Nash equilibrium. In this
paper we focus on this solution concept.

A vector of production levels q is at a Nash equilibrium
iff each firm i’s productions maximize its profit given all
other firms’ productions. The marginal profit of firm i for any
market j for which qij > 0 is ∂πi

∂qij
= αj − 2βjqij − 2cisi. At

the Nash equilibrium, this marginal profit should be 0; also, for
any market j for which qij is 0, it must be that the price pj is
smaller than the marginal cost 2cisi. In fact, these conditions
fully characterize the Nash equilibrium:

Lemma 2 (Bimpikis et al. [9]). A production vector qN forms
a Nash equilibrium if and only if the following is true: for each
firm i and each market j, either pj ≤ 2cisi and qNij = 0, or

0 =
∂πi
∂qij

= pj(dj)− βjqij − 2cisi. (3)

2) Discriminatory Access Platforms: A discriminatory ac-
cess platform differs from an open access one in that the
platform imposes constraints on the set of markets accessible
by each firm. In other words, the platform can choose the
set of edges in E . With E fixed, each firm i can still choose
production levels qij for each market j it can access. The
uniqueness of equilibrium shown by [9] still applies, and so
we focus on pure Nash equilibria. The characterization of the
Nash equilibrium for the open access platform in Lemma 2
also carries over, simply by considering only markets that are
accessible by each firm i.

The value of the discriminatory access platform design
is that the platform can limit firms to choosing only from
markets where a matching is “efficient”. Thus, the platform can

optimize the set of edges in E in order to maximize the social
welfare and so discriminatory access can outperform open
access if the set of edges is designed appropriately. However,
the results in this paper give evidence that this optimization
problem is nontrivial. Additionally, perhaps surprisingly, our
results show that the complete graph, i.e., an open access
platform, generates welfare that approximates that of the
optimal discriminatory access design.

3) Controlled Allocation Platforms: A controlled allocation
platform exerts complete control over the matching between
firms and markets. In particular, firms choose their total
production levels but the platform allocates the productions to
the individual markets in order to maximize the social welfare.

More specifically, given the total productions s1, . . . , sn,
the platform chooses q to maximize SW(q) subject to the
constraints

∑
j qij = si for any i. The same reasoning as

in Lemma 1 shows that the platform will supply to a subset
of markets among which an equal price is maintained; when
the total productions increase, this subset will expand to
include more markets. The demand over all markets can be
aggregated to form a platform-wide inverse demand curve that
is piecewise linear, decreasing and convex. The reallocation
significantly alters the firms’ incentives. The equilibrium pro-
duction levels will be characterized by first order conditions
similar to those in Lemma 2, but with respect to the aggregate
demand curve. Unlike the previous two models, controlled
allocation platforms may have multiple pure Nash equilibria
in general.

III. THE EFFICIENCY OF OPEN ACCESS PLATFORMS

Intuitively, the open access design suffers from inefficiency
due to the freedom given to the firms — the production q
is determined by firms that maximize their own profits rather
than the social welfare. However, our main result in this sec-
tion shows that the inefficiency created by profit-maximizing
behaviors in open access platforms is bounded by a relatively
small constant, paralleling what has been observed in many
other network games, e.g., routing games and facility location
games [36, 40].

Theorem 3. The social welfare at a Nash equilibrium of an
open access platform is at least 7/16 of the optimal social
welfare, i.e., open access platforms have a price of anarchy
of at most 16/7.



This theorem is the first bound on the market efficiency of
networked Cournot competitions. This bound holds regardless
of the potential complexities in the market parameters (i.e.,
the number of firms, markets, or the parameters of costs and
demands).

We also point out that proving Theorem 3 requires over-
coming a technical difficulty that is unusual compared to prior
literature on the price of anarchy. In particular, in the literature,
price of anarchy bounds that focus on settings where the
objective is a summation of quantities are almost exclusively
concerned with problems where all the terms in the summation
are of the same sign, e.g., the congestion in routing games
[36] and the welfare in auctions (the summation of bidders’
valuations) [17, 39]. Our setting includes terms of different
signs, which adds considerable complexity. A rare prior result
for such a setting is Johari and Tsitsiklis [27], who studied the
inefficiency of a single Cournot market with multiple firms.
As a result, [27] could not rely on common tools and pursued
an exhaustive analysis, which we find difficult to extend to the
networked Cournot setting.

To highlight this issue directly, note that, even though
the problem is an ordinal potential game [2], the lack of a
relationship between the potential function and the welfare
(due to the mixed signs of their terms) makes it difficult
to apply standard techniques for bounding inefficiency in
congestion games [36]. The game is also not smooth, as
defined by Roughgarden [34]. As a result, our analysis pursues
a fundamentally different approach. In particular, a key idea in
our proof is to remove the production costs from the welfare
expression and to carefully compensate that with a fraction of
the consumer welfare.

We now describe the proof idea of Theorem 3. The first
idea is to show that, in the Nash equilibrium, no market can
have significantly less total demand compared with the optimal
(Lemma 5). If there were no production costs, this alone
would imply a PoA bound of 4

3 . However, when the costs are
different across the firms, the distribution of production among
the firms can be important as this affects the summation of
the cost terms in (1). In general, this distribution (proportion
of production among the firms) is different in the Nash
equilibrium from that in the socially optimal production. To
address this, the second idea of the proof is to observe that,
for a firm that best responds to market demands, its cost can
be accounted for by a fraction of the consumer welfare it
generates (Lemma 6).

These ideas are fleshed out below. Recall that we denote
by q∗ the optimal production, and qN the Nash production.
Denote by SN and S∗ the sets {j : dNj > 0} and {j : d∗j > 0},
respectively.

Lemma 4. There exists firm i, such that sNi ≤ s∗i .

Proof. Suppose the lemma is not true, i.e., ∀i, sNi > s∗i , we
derive contradiction in two cases.

Case 1: SN ⊆ S∗. Since sNi > s∗i for all i, there exists
j ∈ SN , dNj > d∗j ; given SN ⊆ S∗, this implies that p∗j > pNj

for some market j. On the other hand, for any firm i where
qNij > 0, by the first order condition we have

αj > pNj = 2cis
N
i + βjqij ≥ 2cis

N
i > 2cis

∗
i .

First order condition of the optimal configuration gives
2cis

∗
i ≥ p∗j , a contradiction to p∗j > pNj .

Case 2: There exists market j ∈ SN \ S∗. In this case, for
any i such that qNij > 0, first order conditions give 2cis

N
i <

αj ≤ 2cis
∗
i , a contradiction to sNi > s∗i .

Lemma 5. For any market j, we have dNj ≥
d∗j
2 .

Proof. Suppose, for the sake of contradiction, that there is
some j such that dNj <

d∗j
2 . We show that this contradicts

Lemma 4. Recall that j ∈ S∗ implies q∗ij > 0 for all i. For any
firm i such that qNij = 0, we have 2cis

N
i ≥ pNj > p∗j = 2cis

∗
i ,

i.e., sNi > s∗i . On the other hand, if qNij > 0, we have

2cis
N
i = αj − βjdNj − βjqNij > αj − βj

d∗j
2
− βj

d∗j
2

= αj − βjd∗j = 2cis
∗
i .

Therefore, sNi > s∗i for all i, a contradiction to Lemma 4.

We introduce the following short-hand notation to ease the
presentation of the rest of the proof.

Definition 1. For market j with demand rate βj , let
SWCLj(α, d) := d(α − β

2 d) be the additional consumer
welfare generated by costless production of quantity d when
the price starts from α.

Lemma 6. Given a set of markets, where each market j has
demand curve pj(dj) = αj − βjdj , if a single firm is best
responding, and its production level is dNj at each market j,

then its total cost is at most
∑
j SWCLj(αj − βj ·

dNj
2 ,

dNj
2 ).

In plain language, the lemma states that, if we reduce the
firm’s production by half in each market but eliminate all its
production cost, the remaining social welfare contributed by
the firm is no less than the social welfare at its best-response
production level with cost.

Proof. Since ∂ SWCLj(αj ,dj)
∂dj

= pj(dj), we have

SWCLj(αj − βj ·
dNj
2 ,

dNj
2 ) =

∫ dNj

dN
j
2

pj(d) dd.

By the Mean Value Theorem, this is equal to
dNj
2 · pj(d̂) for

some d̂ ∈ [
dNj
2 , d

N
j ]. But

pj(d̂) ≥ pj(dNj ) = 2cis
N
i + βjd

N
j ≥ 2cis

N
i ,

where the inequality follows by first order conditions
(Lemma 2). Therefore, SWCLj(αj−βj ·

dNj
2 ,

dNj
2 ) ≥ cisNi dNj .

The lemma immediately follows by summing over all markets.



Lemma 7. For any quadratic function of the form f = bx−
ax2, with a, b > 0, which takes its maximum value at f( b

2a ) =
b2

4a , we have f(γ · b2a ) = [1− (1−γ)2] · b
4a2 for any γ ∈ [0, 1].

Proof. One can do the substitution directly to check the
statement. A more intuitive way to see this is to note that the
image of f is a reversed and translated image of the function
f = ax2.

Proof of Theorem 3. At the Nash equilibrium, each firm i is
best responding to the set of markets where each market j
has a price starting from αj − βjqN−i,j , where qN−i,j denotes∑
i′ 6=i q

N
i′,j . Therefore, by Lemma 6, the production costs at

Nash equilibrium can be upper bounded by

∑
j

∑
i

SWCLj

(
αj − βj

(
dNj −

qNij
2

)
,
qNij
2

)
.

For each j, SWCLj is convex in its first parameter, this is

therefore at most
∑
j SWCLj(αj−βj ·

dNj
2 ,

dNj
2 ), and the social

welfare at the Nash equilibrium is

∑
j

SWCLj(αj , d
N
j )−

∑
i

ci(s
N
i )2 ≥

∑
j

SWCLj

(
αj ,

dNj
2

)
.

As long as the price on a market is positive (which is clearly
the case for the Nash equilibrium), SWCLj is an increasing
function in its second parameter, and therefore by Lemma 6,
this is at least

∑
j SWCLj(αj ,

d∗j
4 ).

So far we have shown that welfare at Nash is at least∑
j SWCLj(αj ,

d∗j
4 ). Now consider the optimal production

q∗. Suppose the productions q∗ij′ are fixed for each firm i
and each market j′ 6= j, then the optimal production must
maximize the marginal social welfare from market j. More
specifically, one can define a function Wj(dj |q−j) which is
the maximum marginal social welfare from market j when the
total production on j is dj and the productions at the other
markets are q−j :

Wj(dj | q−j) = max
q̂:
∑

i q̂ij=dj ;q̂−j=q−j

SW(q̂)− SW(0, q−j),

then d∗j must maximize Wj . Since the cost functions are
convex, the optimal social welfare is at most

∑
jWj(d

∗
j ). If

one can show that Wj is a quadratic function of the form as
in Lemma 7, then since Wj(dj) is pointwise dominated by
SWCLj(αj , dj), the theorem would follow from Lemma 7.
Wj being quadratic is in fact easily seen, and can be written
explicitly as

Wj(dj | q−j) :=dj(α− βdj)

−
∑
i

ci( dj
ci∑
i′

1
ci′

+ qi,−j

)2

− cis2i,−j

 ,
where si,−j is

∑
j′ 6=j q

∗
i,j′ . This completes the proof.

IV. THE COMPLEXITY OF DISCRIMINATORY
ACCESS PLATFORMS

One may hope to improve the performance of the open
access platform design by limiting the access of firms to
markets where participation would be “inefficient”, i.e., hurt
social welfare. This motivation leads to the design of discrimi-
natory access platforms. The question we ask in this section is:
How much improvement can discriminatory access platforms
provide over open access platforms?

To begin to address this question, we first need to find the
optimal discriminatory access design, i.e., the optimal set of
connections to allow between firms and markets. However,
determining the optimal set of connections for maximizing
social welfare requires optimization over a combinatorial set,
the set of bipartite graphs between firms and markets. Thus,
to be able to perform such an optimization efficiently it is
necessary to find structural properties to exploit. Intuitively,
one might expect the monotonicity in edges and costs to help
make such an optimization tractable. However, such desirable
properties do not hold.

A. The difficulty of optimizing discriminatory access platforms

To highlight the challenge in optimizing discriminatory
access platforms we describe a variety of simple examples that
violate desirable structural properties. Our first example shows
that allowing more access does not always improve welfare at
the Nash equilibrium. Surprisingly, this phenomenon occurs
even when there is only one market.

Example 1 (Excluding a firm could increase welfare).
Consider a three firms, one market system, with the following
parameters:

α = 100, β = 0.45, c =
[
0.01 0.01 1

]T
It can be checked that the Nash productions for this system

q = (68.6672, 68.6672, 13.1717),

yielding a social welfare of 9686.1. On the other hand,
if the platform bars access of the last high-cost firm, the
Nash production will be (72.9930, 72.9930), with the welfare
improved to 9696.9.

Our second example shows that, not only is there non-
monotonicity with respect to the network, there is non-
monotonicity with respect to the costs of firms as well.

Example 2 (Nash welfare may increase as a firm’s cost
increases). In Example 1, when one increases the high-cost
firm’s cost while fixing the costs of the other two firms, the
third firm will soon be included in the optimal set of firms. In
particular, this shows that the Nash welfare can increase as
a firm’s cost increases, even when all other market conditions
are fixed.

Finally, our third example highlights that the optimal solu-
tion set itself is non-monotonic.



Example 3 (The optimal set of k + 1 edges may not contain
the optimal set of k edges). Consider the following two firms,
two markets system, with the following parameters:

α =

[
100
70

]
, β =

[
0.5
0.25

]
, c =

[
0.25
0.24

]
.

It can be checked that the optimal one-edge access would
be to allow firm 2 to access market 1, whereas the optimal
two-edge access would be to allow firm 1 and 2 to access
market 1 and 2, respectively. This shows that a naı̈ve “greedy”
approach for optimizing a discriminatory approach is not
possible.

These examples highlight the difficulty of optimizing the set
of connections in a discriminatory access platform. However,
they stop short of showing that the algorithmic problem is
computationally hard in a formal sense. An open problem for
future work is to either prove computational hardness formally
or exhibit a tractable algorithm.

B. The efficiency of optimized discriminatory access platforms

Despite the difficulty exhibited by the examples above,
we can still compute the optimal design for small examples.
Thus, we can provide some insight into the efficiency gains
of discriminatory access over open access.

To study this question we have performed numerical cal-
culations for settings that have up to four firms and up to
three markets. For each combination of markets and firms,
e.g., 4 firms and 3 markets, we randomly choose the demand
and cost function parameters – α ∼ Uniform([0, 100]), β ∼
Uniform([0, 1]) and c ∼ Uniform([0, 1]) – and compute
the social welfare for the open access, optimal discriminatory
access, and social optimal in 1000 random systems of firms
and markets.

Across all these runs, the improvement of the optimal
discriminatory access platform over the open access platform
was never more than 3%. Further, the improvement of the
social optimal over the open access platform was never more
than 33% (which matches the inefficiency in the case of one
market and one firm).

This is to be expected given Theorem 3, which can be
interpreted as an “approximation guarantee” for optimizing the
discriminatory access platform design. In particular, using the
complete graph guarantees at least 7/16 of the optimal social
welfare, and thus of the social welfare achievable under any
discriminatory access design (since the optimal social welfare
is monotonically increasing with the set of edges).

V. THE INEFFICIENCY OF CONTROLLED
ALLOCATION PLATFORMS

A natural response to the potential inefficiency of the open
access model is for platforms to optimize the matching of
firms to markets directly. It is typically possible for the
platform to have considerable knowledge on the firm costs and
market demands, which makes the optimization of matching
appealing. This leads to the design of controlled allocation
platforms.

However, the control over allocations exerted by the plat-
form may create unintended incentives for the firms. Though
they cannot strategically choose prices or matches, they still
have control over their participation in the platform. In the
Cournot setting, this takes the form of strategic choices of
production levels.

Our main result in this section highlights that these distorted
incentives lead to inefficient market outcomes that can be far
worse (in the worst case) than outcomes under open access
designs. Further, these distorted incentives can create other
challenges, such as the existence of multiple equilibria.

Theorem 8. A Controlled Allocation Platform can have un-
bounded price of anarchy. In particular, there is a family of
networks where the Nash equilibrium is unique and the price
of anarchy is Ω(m).

The contrast between Theorem 8 for controlled allocation
platforms and Theorem 3 for open access platforms is stark.

Note that the networks exhibited to prove Theorem 8 are
simple. They use a single firm with costless production. The
construction begins with a single market and then, as markets
are added one by one to the system, the parameters of each new
market are such that the firm will have no incentive to increase
production due to the reallocation under the controlled access,
whereas the socially optimal (non-Nash) production level does
increase, as does the optimal welfare.2

Before providing a proof of Theorem 8 we first state and
prove the key structural lemma we use in the proof.

Lemma 9. For a firm with costless production, a set of linear
demand markets under controlled allocation is equivalent to a
single market with a convex, piecewise linear demand curve.
Conversely, any convex, decreasing, piecewise linear demand
curve with finitely many linear segments can be realized by a
set of linear demand markets under controlled access.

Proof. The characterization of the socially optimal production
in Lemma 1, with s fixed highlights that the platform will
reallocate this amount to d1, . . . , dm such that

∑
j dj = s, and

for each market j where dj > 0, pj is equal to a same price p;
for each market j where dj = 0, it must be that αj ≤ p. This
shows that, as s increases, the allocation will enter the markets
one by one in the order in which αj decreases.

We say a market becomes active when supply starts entering
it. For a set of active markets, before the next market becomes
active, the marginal increase in supply will be allocated in
proportion to 1/βj (in order to keep the prices the same).
This fully describes the behavior of the platform.

Without loss of generality, assume the markets are ordered
such that α1 ≥ . . . ≥ αm. From the firm’s point of view,
the platform is equivalent to a single market with a piecewise
linear demand curve: when the price is between α1 and α2,
the rate at which price drops when s increases is β1; for p ∈
[α2, α3], the rate is 1/( 1

β1
+ 1

β2
). In general, when the first k

2Note that, when a firm has no production cost, the socially optimal
production is always to produce until the price in every market is driven
to 0.



markets are active, prices drop i at the rate of (
∑k
j=1

1
βj

)−1.
We call this single demand curve the aggregate demand curve.

For a given production level, the area under the aggregate
demand curve is equal to the welfare in the original markets.
The aggregate demand curve fully characterizes the set of
markets under controlled access. Note that whenever a new
market joins, the rate at which price drops becomes slower,
therefore the aggregate demand curve is always convex.

Conversely, we can show that any convex, decreasing,
piecewise linear demand curve consisting of finitely many
linear segments is equivalent to a set of linear demand markets
under controlled access. We omit the details due to space
constraints.

Proof of Theorem 8. By Lemma 9, we can focus on construct-
ing an aggregate demand curve. Fix a constant λ ∈ (0, 12 ). The
aggregate demand curve we construct for m markets, (m ≥ 2),
is

p(d) = max
0≤k<m

(λk − λ2kd).

It is not hard to verify that this is the piecewise linear
function that connects the following points: (0, 1), ( 1

1+λ ,
λ

1+λ ),
( 1
λ(1+λ) ,

λ2

1+λ ), · · · , ( 1
λm−2(1+λ) ,

λm−1

1+λ ), ( 1
λm−1 , 0). Being the

maximum of a family of decreasing linear functions, p(d) is
obviously a convex decreasing function.

We first calculate the optimal social welfare, the area
under p(d). The trapezoid whose vertices are ( 1

λk−1(1+λ)
, 0),

( 1
λk−1(1+λ)

, λk

1+λ ), ( 1
λk(1+λ)

, 0), ( 1
λk(1+λ)

, λ
k+1

1+λ ) has area

1

2

(
1

λk(1 + λ)
− 1

λk−1(1 + λ)

)(
λk

1 + λ
+
λk+1

1 + λ

)
=

1− λ
1 + λ

.

There are m − 2 such trapezoids under p(d), and therefore
the socially optimal welfare is Ω(m). On the other hand, the
linear components of p(d) are designed so that producing on
any of the linear segment gives a maximal profit of 1

4 (for
the k-th segment, the profit maximizing production level is

1
2λk−1 ). The firm is indifferent to best responding to any of
the linear segments, and all the production levels 1

2λk for k =
0, . . . ,m−1 are Nash equilibria. If we push the starting point
of p(d) from (0, 1) to (0, 1+ε) for some ε > 0, then producing
1+ε
2 (by responding only to the first market) will be the unique

equilibrium, resulting in a social welfare of only 3(1 + ε)2/8.
Therefore the price of anarchy is Ω(m).

The example establishing Theorem 8 highlights that a high
production level can be more crucial to the welfare than an
ideal distribution among the markets. Additionally, this also
begs the question: Can the platform do better by optimizing a
different quantity? Given our result in Section III, it is obvious
that platforms can do better by doing nothing.

VI. CONCLUSION

This paper studies a trend in platform design today: the
move from open access platform designs toward discrimina-
tory access and controlled allocation platform designs. One
reason for this shift is a belief that open access markets

are inefficient due to strategic behavior from firms and that
limiting access or controlling allocations can lead to more
efficient markets. In this paper, our results for networked
Cournot markets counter this belief. We show that open
access markets have a small constant factor efficiency loss
(PoA 16/7), whereas controlled allocation platforms can have
unbounded efficiency loss.

This paper represents a first step toward contrasting open
access platforms with discriminatory access and controlled
allocation platform designs. There are many interesting ques-
tions that remain. For example, is it possible to efficiently
optimize the allowed connections in the discriminatory access
model or is the task NP-hard? Further, our focus has been on
social welfare due to the importance of network effects for
platforms; however, what if the platform is more concerned
with maximizing short term profit than long term growth?

More broadly, increased efficiency is only one motivation
for moving to discriminatory access and controlled allocation
platforms. Another is to provide a simple, easy-to-use interface
for firms and consumers. Participants in open access platforms
may suffer from information overload. How does this factor
impact incentives and the efficiency of market outcomes?

Finally, this paper focused on matching and allowed pricing
to emerge endogenously. Another trend in platform design
today, exemplified by Uber, is fine-grained control on pricing.
Understanding the interaction between controlled allocation
and fine-grained pricing is a challenging open question.
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