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1 Introduction

Since the work of Kelso and Crawford (1982) the two-sided many-to-one matching model has

emerged as the prominent tool to analyze labor markets whenever firms and workers are heteroge-

neous. The notion of stability, initially due to Gale and Shapley (1962), is the standard solution

concept for matching models in general and for labor markets in particular. A stable outcome is

an allocation of workers to firms (of which one firm is the outside option of unemployment) and a

salary vector for the workers such that no combination of a single firm and a set of workers can

improve their position while disregarding the others (there is no “blocking coalition”). Underlying

the logic of this solution concept is the notion of a free, unregulated, competitive market, where

any coalition can withdraw from the market if the market does not provide them with a desired

outcome.

A fundamental question about stability, as with any game-theoretic (or economic) solution

concept, is its existence. An elegant solution concept whose existence cannot be guaranteed in

settings of economic interest falls short of being fully satisfactory. In their original paper, Kelso

and Crawford prove existence, as well as efficiency, under the assumption that firms’ preferences

over sets of workers exhibit “gross substitutability” (on which we elaborate in the sequel). Much

of the follow-up literature followed in their footsteps and assumes gross-substitutes production

functions. In fact, Gul and Stacchetti (1999) have shown that existence of stable outcomes may

not be guaranteed beyond gross substitutes production functions and the theory then becomes

mute for such markets. To remedy this, we consider the following question: can one weaken the

requirements underlying the notion of stability, in some natural way, to obtain existence for a larger

class of markets?

In reality many labor markets are regulated and in particular much of the regulation provides

various degrees of job security to workers.1 The theoretical literature on matching seems to be

mute about the possibility and implications of job security, and the ongoing public debate of such

regulation has not been part of the matching literature so far. Job security regulation, within the

context of a matching model, should be seen as a hurdle to the formation of blocking coalitions.

Under such regulation, one should expect stability to hold for a larger class of production functions.

This is exactly the line of thought we pursue.

Thus, partly to remedy the existence problem of stable outcomes and partly motivated by

observations about real labor markets, the present paper studies matching markets that enforce

1In most European countries many employees have indefinite contracts which make it very difficult and very costly
for an employer to terminate a contract. In the UK, for example, the tenure necessary to qualify for such protection
was lowered in 1999 from 24 to 12 months (Marinescu, 2009). In Germany, the 1951 Dismisal Protection Act which
is still largely valid today acknowledges that workers have the right to keep their jobs, and, for example, fixed term
contracts are allowed only for a period of up to 18 months (Emmenegger and Marx, 2011). High job security exists
in many non-European countries as well. In India, as another example, the Industrial Disputes Act of 1976 requires
that written permission to retrench workers be obtained, normally from the relevant state government (Fallon and
Lucas, 1991).
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job security. Our contribution is conceptual as well as technical. Conceptually, we introduce a

new solution concept for the many-to-one matching model: JS-stability. We do so by revising the

notion of stability so it accounts for a regulated labor market. In particular we would like to model

a regulated market where firms cannot unilaterally fire employees, or where such costs of firing are

prohibitively high. In such labor markets, for a firm to be part of a blocking coalition, it must

account for its current employees and ensure their utility is not compromised. More simply, such a

firm must retain its workers at their current salary level. Technically, such regulation implies fewer

blocking coalitions. Consequently, the requirements underlying the implied notion of stability,

which we refer to as JS-stability (where JS stands for Job Security), become easier to satisfy.

It is no surprise, therefore, that we can guarantee the existence of JS-stable outcomes in some

markets where no stable outcomes exist. As previously discussed, a key assumption for most results

on labor markets is that of gross substitutability. In the Kelso and Crawford model that we adopt,

such gross substitutability is a necessary and sufficient condition for a variety of results (see, among

others, Kelso and Crawford (1982), Gul and Stacchetti (1999) and Ausubel (2006)). Our treatment,

on the other hand, goes substantially beyond the scope of gross substitutability and allows for a

broader class of preferences. Recall that a production function is called submodular if it exhibits

decreasing productivity. It is well-known that the class of submodular production functions strictly

contains the class of gross-substitutes production functions, and in fact significantly expands it.

The classes of production functions that we study strictly contain and significantly expand the

class of submodular production functions.

Our analysis starts by providing analogs of the welfare theorems to markets with job security,

using these new concepts. On the one hand, we show that existence and optimality of a JS-stable

outcome is guaranteed for a class of “almost fractionally subadditive” valuations (AFS), which

we formally define in the sequel. On the other hand, although there may be inefficient JS-stable

outcomes, we provide a tight bound on the efficiency loss that such an outcome entails. In fact, in

cardinal terms, summing over all players’ utilities (as expressed with a numeraire good), the social

welfare of any JS-stable outcome is at least 50% of the most efficient outcome. We then show that

the family of AFS production functions is the largest set of production functions for which our

welfare theorems hold.

A shortcoming of our model is that it views the labor market as static. A static model admittedly

cannot handle the following temporal argument: firms may be more cautious in hiring initially if

they eventually face limitations on their ability to reduce the workforce. Such an argument is

captured in a variety of general equilibrium labor economics models; we discuss specific references

in Section 1.1. We believe that this argument does not make the study of a static solution vacuous.

In fact, any rest point of a dynamic setting cannot be unstable, as it will clearly imply deviations

and further deviations. In other words, we argue that the study of stability in the static case tells

us what outcomes must be excluded even in the dynamic case. Thus, as Kelso and Crawford argue,
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we must understand the static case before developing the dynamic model, because stability may

simply not exist, for example, due to the nature of the production functions, and regardless of the

dynamics being considered. The current contribution should therefore be viewed as the first in a

sequence of works intended to study job security in static and later dynamic matching models.

The notion of JS-stability is primarily motivated by regulatory intervention designed to increase

job security in labor markets. However, it may also have relevance in the study of immigration and

community formation. In this context, matching takes place between countries on the one hand

and citizens on the other hand. Thus, firms are replaced by countries and workers by citizens. In

such matching markets an asymmetric notion of stability is needed since citizenship, once granted,

is almost impossible to revoke. On the other hand, although there exists a barrier for citizens to

immigrate and replace their current citizenship with a different one such a barrier is clearly lower,

which can be evidenced empirically. Thus, a variant of JS-stability to such a NTU setting may

correctly represent the feasible community structure in a model of immigration.2 In fact, there may

be additional many-to-one matching markets where divorce costs on both sides of the market are

highly asymmetric and so the notion of JS-stability becomes an adequate tool for their analysis.

The paper is organized as follows. Section 1.1 discusses the related literature. Section 2 intro-

duces the model and details the new solution concept as well as the class of production functions we

study. Section 3 provides the main results, and Section 4 gives concluding remarks. Some proofs

are postponed to the Appendix.

1.1 Related Literature

The existence of stable outcomes under weaker notions of substitutability has received recent at-

tention in the literature on matching with contracts, a model of labor markets and stability that

originates with Hatfield and Milgrom (2005) and generalizes Kelso and Crawford (1982). Within

this model Hatfield and Kojima (2010) define two notions, “bilateral substitutes” and “unilat-

eral substitutes”, that extend the original substitutes condition and still ensure existence of stable

outcomes. Sönmez and Switzer (2013) and Sönmez (2013) demonstrate the applicability of these

extended classes in the context of the “cadet-branch matching problem”. However, these new

classes shed no light on the original Kelso and Crawford (1982) model. When folding back the

new classes of production function into the Kelso and Crawford (1982) model one obtains that

the classes of “bilateral substitutes”, “unilateral substitutes” and “gross substitutes” are one and

the same.3 This is no surprise given the maximality theorem of Gul and Stacchetti (1999) which

argues that one cannot go beyond the class of gross substitutes without considering weaker notions

of stability as we do.

2We thank Yoram Weiss for pointing out this connection between JS-stability and community formation.
3The way to embed the latter model in the former is by restricting attention to contracts of the form of a triplet

(m,n, s), interpreted as a contract where worker m is employed by firm n for the salary s.
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A sequence of papers starting with Compte and Jehiel (2008), and more recently Pereyra (2013),

study a dynamic two-sided matching model of labor markets with existing workers who are guar-

anteed to be matched with at least as good partners as their current ones. Although these papers

share a similar motivation to ours, they have very different models: they considered matchings

with non-transferable utilities (i.e., non-negotiable salaries), and their markets have specific sets of

workers (i.e., existing workers) who have secured jobs. Additional papers in this strand are Kurino

(2011) in the context of on-campus housing for college students (where freshmen apply to move in

and graduating seniors leave) and Ünver (2010) in the context of kidney exchange. These papers

focus on the unit demand case (one-to-one matching) and utilities are non-transferable.

The lion’s share of the theoretical literature on job security and employment protection leg-

islation makes use of partial and general equilibrium in dynamic models. A common thread of

all these models is that the work force is assumed homogeneous (e.g., Gavin, 1986, Lazear, 1990,

Acemoglu and Shimer, 2000, Bertola, 2004), which is in sharp contrast with our heterogeneity as-

sumption. Typically in these papers, a firm’s productivity depends on the size of the workforce but

not on the exact composition of workers it employs. Whereas our model is static, these models are

dynamic and information stochastically unravels with time (e.g., workers’ productivity and firms’

technology). Whereas our work is more concerned with existence and efficiency of stable outcomes

with regulation, their focus is on the impact of regulation on unemployment rates. Interestingly,

the findings of this literature, both theoretically and empirically, are inconclusive; see the survey

by Bertola (1999). Although the current paper does not discuss unemployment rates we argue

for the relevance of the new notion of stability to such an analysis. In particular, comparison of

unemployment rates in stable versus JS-stable outcomes may shed light on this important topic.

2 Preliminaries

A labor market is composed of a finite set of firms and workers such that each firm hires as many

workers as it wishes, but each worker is allowed to work only at one firm. Each firm pays its

workers a salary and the utility of each worker depends on which firm he works for and the salary

he receives. Each firm’s objective function is its profit, defined as the difference between the value

of its production (in salary units) and the salaries it pays out. Note, in particular, there are no

externalities among workers nor among firms.

The formal model we use is due to Kelso and Crawford (1982). A labor market is a tuple

(N,M, v, b) where N is a finite set of firms and M is a finite set of workers with quasi-linear utility

functions; in the sequel we abuse notation and use N and M to denote the cardinality of these

sets as well. In the tuple v = {vn}n∈N , vn : 2M → <+ denotes firm n’s monotonically increasing4

production function, as measured in the same units as salaries. We calibrate vn(∅) = 0. In the

4vn is monotonically increasing if C ⊂ D =⇒ vn(C) ≤ vn(D).
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tuple b = {bnm}m∈M,n∈N , −bnm denotes the valuation, in salary terms, of worker m for working at

firm n without being paid. We typically think of bnm as the minimal salary required by worker m

for working at firm n and hence the negation sign. Thus, the quasi-linear utility for this worker is

um(n, s) = s − bnm when her salary is s.5 Hereinafter firm 0 will denote unemployed workers and

we calibrate b0m = 0 for all m. We refer to worker m as salary-driven if bnm = 0 for all n.

As productivity is measured in salary units, the profit of firm n from employing a set of workers

C when workers’ salaries are {sm}m∈M is Πn(C; s) = vn(C)−
∑

m∈C sm. We often abbreviate the

tuple (N,M, v, b) to (v, b) as the sets of workers and firms are implicitly encoded in (v, b).

For any two disjoint sets of employees, C and D, we denote by v(D|C) = v(D ∪C)− v(C) the

marginal productivity of D given C and we also abuse notation and write m to denote the singleton

set {m} as well (hence vn(m) will denote the productivity of a single worker, m).

Our results require the following assumption that relates each worker’s minimal salaries to his

marginal productivity. This “marginal productivity assumption” (MP), originally made by Kelso

and Crawford (1982), states that the marginal productivity of any firm from any employee is at

least the employee’s minimal desired salary. Formally,

∀n, C ⊂M, m ∈M \ C, vn(m|C) ≥ bnm. (MP)

Notice that MP trivially holds for any salary-driven worker, i.e., a worker with all minimal

salaries being equal to zero. More generally, we view this as a behavioral assumption on the way

workers set minimal salaries. In particular, Kelso and Crawford (1982) justify this assumption

by writing “This is a natural restriction, since if a worker’s marginal product, net of the salary

required to compensate him or her for the disutility of work at a given firm, were negative, the firm

could agree to let the worker do nothing for a salary of zero.” (section 2, page 1486).

An assignment of workers is a partition A = {A0, A1, . . . , AN} of the set of workers, where An

denotes all workers employed by firm n, with A0 interpreted as the set of unemployed workers. An

allocation is a pair (A, s) where A is an assignment of workers and s ∈ <M+ is a vector of salaries.

Such an allocation implies that any employee m ∈ An works for firm n at a salary sm whenever

n > 0, and m ∈ A0 implies that m is unemployed and receives no salary.

Definition 1. An allocation (A, s) is individually rational (IR) if (1) vn(An)−
∑

m∈An sm ≥ 0 ∀n ∈
N ; and (2) sm ≥ bnm for all n ∈ N and m ∈ An.

The first part of this definition requires that each firm has a non-negative net profit and the

second part requires that each employed worker is paid her minimal required salary.

5The model and results in Kelso and Crawford (1982) make use of an abstract utility function for workers, not
necessarily of a quasi-linear form. In particular the units of such functions are abstract utilities in contrast with
our quasi-linear functions whose units are in salary terms. Thus, as opposed to the Kelso-Crawford model, we can
discuss a cardinal measure of social welfare and consequently measure efficiency levels, which is central to our results.
However, we do so without ignoring non-salary related components of the work-package as these are embedded in the
minimal salary component (b in our model) which is dependent on the specific worker and the specific firm.
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2.1 Stability and Job Security

The central solution concept we adopt is that of stability. However our notion of stability is a central

innovation of our work and is weaker than the standard stability notions in two-sided markets. The

stability notion we introduce is inspired by markets where job security is guaranteed by regulatory

means. In particular, we consider the following simple yet somewhat extreme assertion: once a

worker is employed by a firm for a certain salary, only the worker can decide to quit whereas the

firm cannot lower the salary nor can it fire the worker.

The stability notion we introduce is an adaptation of the standard notion of stability to such

regulatory restrictions. We now turn to define the new notion of stability in steps. First, recall the

classic stability notion:

Definition 2. A coalition {n,C} is a blocking coalition for an allocation (A, s) if and only if there

exists a vector of salaries, ŝ ∈ <C+, such that:

1. um(n, ŝm) ≥ um(k, sm) ∀k ∈ N,m ∈ Ak ∩ C (workers in C are better-off),

2. vn(C)−
∑

m∈C ŝm ≥ vn(An)−
∑

m∈An sm (firm n is better-off),

with at least one of the inequalities being strict. An allocation (A, s) is stable if and only if it is

IR and there exist no blocking coalitions for it.

Our definition of a JS-blocking coalition is in the spirit of the above definition, adding to it the

requirement that JS-blocking coalitions must contain all previosuly employed workers. In other

words, JS-blocking coalitions are blocking coalitions in which the deviating firm is restricted to

adding workers. This is done by adding a requirement that An ⊂ C. This is in fact the only

difference between the two definitions.

Definition 3. A coalition {n,C} is a JS-blocking coalition for an allocation (A, s) if and only if

it is a blocking coalition, and additionally An ⊂ C. An allocation (A, s) is JS-stable if and only

if it is IR and there exist no JS-blocking coalitions for it.

In words, the requirement for JS-stability, beyond IR, is that there exists no firm and no set

of workers currently not working for this firm such that the firm can offer better working terms

for these new workers (first requirement) while maintaining its current set of workers at their

current salaries and increasing its profits (second requirement). This is a weaker notion than the

core allocation defined by Kelso and Crawford (1982). While Kelso and Crawford require that an

allocation be immune to a deviation by a coalition of workers and a firm where such workers may

(partly) replace the firm’s current work force, our notion ignores this possibility as it is banned by

regulation.

Requiring individual rationality as part of the definition of JS-stability implies that a firm that

is not profitable, and thus in danger of bankruptcy, need not comply with job security regulations.

In other words, we only force profitable firms to comply with job security regulations.
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One can naturally entertain the possibility that instead of firing employees a firm can induce

them to voluntarily quit by making a sufficiently large buyout offer.6 Seemingly, this possibility

is not captured by the notion of JS-stability yet conforms with the regulatory environment we

model. However, Lemma 4 in the Appendix shows that without loss of generality we do not need

to consider JS-blocking coalitions involving such payments. The reason is that a firm always profits

more by actually employing workers than by paying them to quit.

JS-stability models an extreme version of regulation related to job security. Thus, the ineffi-

ciency induced under JS-stability in the worst case may be seen as a lower bound on the efficiency

implications of some more realistic regulation. Indeed, as we demonstrate in this work, in spite

of our modeling choice, efficiency partly prevails. This suggests that weaker forms of regulation

designed for job security do not necessarily contradict efficiency.

Technically, checking if a coalition is JS-blocking becomes simpler and more convenient using

the following Lemma:

Lemma 1. Let C ⊂M \An. The coalition {n,An ∪C} is a JS-blocking coalition for the allocation

(A, s) if and only if vn(C|An) >
∑

m∈C sm − b
k(m)
m + bnm, where for every m ∈ C, k(m) is the firm

that satisfies m ∈ Ak(m).

The proof of this lemma is straightforward and therefore omitted.

2.2 Efficiency

The efficiency level of an assignment A is P(v,b)(A) =
∑

n v
n(An)−

∑
m∈An bnm; recall that vn(·) and

bnm are all measured in salary units. An assignment is efficient if it maximizes the efficiency, over

all possible assignments. We sometimes drop the subscript (v, b) when it is clear from the context.

2.3 Fractionally subadditive production functions

It has long been recognized that the class of gross substitutes (GS) production functions captures

only a restricted notion of substitutes. For example, GS does not even include all production

functions that exhibit decreasing marginal productivity, i.e., GS is a strict subset of the class of all

submodular (SM) production functions.7

The various structures that we will assume on the production technology significantly expand

SM (let alone GS). A key ingredient in these structures is the class of fractionally subadditive

(FS) production functions. The definition of this class uses the following notion: for any C ⊆
M , a vector of non-negative weights {λD}D⊆C,D 6=∅ is a fractional cover of C if for any m ∈ C,

6We thank Regis Renault for posing this question.
7In fact, Lehmann et al. (2006) argue that SM significantly expands GS, in the following sense. A production

function in SM can be represented by a vector in (2M −1)-dimensional Euclidean space that specifies the value of the
production function on every non-empty set. Under this natural representation, Lehmann et al. (2006) prove that
the set GS has Lebesgue measure zero in the space SM.
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∑
{D⊆C:m∈D} λD = 1. An example of a fractional cover of the set {a, b, c} is λD = 1

2 for any subset

with two workers and λD = 0 otherwise.

Definition 4. A firm’s production function v is fractionally subadditive on C ⊆ M if for any

fractional cover {λD}D⊆C,D 6=∅ of C, v(C) ≤
∑

D⊆C,D 6=∅ λDv(D).

We can offer the following intuition for this notion: assume a firm can either make use of the set

C of workers during a single period or it can break C into subsets of workers (possibly overlapping)

and deploy the subsets sequentially, each for a fraction of a period, such that any employee works

one full period of time. The production function is fractionally subadditive on C if the latter

option is always at least as productive as the former. In the example of a fractional cover preceding

Definition 4, the firm will (weakly) prefer having the three workers work in three shifts of pairs,

each for half of a time period, over employing all three workers simultaneously for a single time

period.

Definition 5. A firm’s production function v is fractionally subadditive, denoted v ∈ FS , if for any

C ⊆M , v is fractionally subadditive on C.

FS continues to enforce substitutability, as the above intuition suggests. In particular, for any

v ∈ FS and any two sets S, T , v(S ∪ T ) ≤ v(S) + v(T \ S) ≤ v(S) + v(T ), as the weights λS = 1

and λT\S = 1 are a fractional cover of S ∪ T . FS was defined by Nisan (2000) and by Feige (2009)

in the context of combinatorial auctions. Lehmann et al. (2006) show that SM ⊂ FS.8 Dobzinski

et al. (2010) describe the following useful characterization of FS, that we refer to as “supporting

salary vectors”. As we describe in the sequel, our analysis heavily relies on this characterization.

Definition 6. A vector of salaries, s, is called a supporting salary vector for the production function

v and a subset of workers C ⊂ M if (1)
∑

m∈C sm = v(C); and (2) For any D ⊂ C,
∑

m∈D sm ≤
v(D).

Theorem 1 (Dobzinski et al. (2010)). A production function v is fractionally subadditive on C ⊆M
if and only if there exists a non-negative supporting vector of salaries for v on C.

As an aside, we remark that this is in fact the Bondareva-Shapley theorem. Specifically, consider

the cooperative game where the set of players is the set of workers and the characteristic function

is the production function. Then, fractional covers are exactly “balanced collections of weights”,

fractional subadditivity exactly corresponds to antibalancedness, and the set of supporting salary

vectors for the grand coalition is exactly the anticore of the cooperative game. Theorem 1 thus

becomes the Bondareva-Shapley Theorem.9

8Lehmann et al. (2006) give the following example to demonstrate that the inclusion is strict. Consider the
following symmetric production function on three workers: any set of one or two workers produces 2, while the set of
all three workers produces 3. This is clearly not in SM, and it can be easily verified that it belongs to FS.

9The notions of antibalanced functions and the anticore are mirror images of the notions of balanced functions
and the core, where the inequalities in the definitions are reversed. The Bondareva-Shapley theorem links the core
with balanced charateristic functions, and the anticore with antibalanced charateristic functions.

9



3 Results

We now describe our three main results. The first two connect JS-stability with efficiency and can

be viewed as analogs for the First and Second Welfare Theorems. In particular, we define a class

of production functions called AFS, and show that whenever production functions belong to this

class, efficient outcomes are JS-stable. Our third result shows that AFS is the maximal such class.

These results parallel central results in the literature on stability in labor markets (without job

security). We informally summarize our results and their parallels toward the end of this section.

3.1 A 1
2
-First Welfare Theorem

As one can expect, JS-stability does not guarantee efficiency. On the other hand, the inefficiency

of any JS-stable outcome is bounded.

Theorem 2. If (A, s) is JS-stable and Ā is efficient, then P (A) ≥ 1
2P (Ā).

Note that this result is not restricted to any specific class of production functions; it holds for

arbitrary monotone production technologies that satisfy the MP assumption. We sketch the proof

here and supply a formal proof in the Appendix.

First consider the case of labor markets with salary-driven workers. The efficiency is then the

sum of firms’ productivities, P (A) =
∑

n∈N v
n(An). JS-stability of (A, s) implies that for any firm

n, the productivity gain from hiring all of the workers in Ān who do not already belong to An

cannot exceed the sum of salaries of those workers. Summing over all firms, we may conclude that

P (Ā)− P (A) ≤
∑
m∈M

sm.

On the other hand, individual rationality implies that the sum of salaries is bounded above by the

sum of firms’ productivities, ∑
m∈M

sm ≤ P (A).

Combining these two inequalities, we obtain P (Ā)−P (A) ≤ P (A), which implies the bound stated

in the theorem. Finally, to remove the assumption of salary-driven workers, we make use Lemma 6

in the Appendix which expresses several useful relationships between general labor markets and

those with salary-driven workers.

The bound on the efficiency loss in Theorem 2 is tight, as the following example illustrates.

Example 1. Consider a labor market with two salary-driven workers a, b and two firms with unit-

demand10 production functions v1, v2, defined as follows: v1(a) = v2(b) = 2, v1(b) = v2(a) = 1.

10A unit-demand production function satisfies v(B) = max{v(x) : x ∈ B} for any B ⊆ M . In words, a coalition
can only produce as much as its top producing member. These production functions are in GS, hence also in AFS.
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The following allocation is JS-stable: firm 1 is matched to worker b, firm 2 is matched to worker a,

and both salaries are 1. This allocation has welfare 2, while the efficient allocation has welfare 4.

The following example demonstrates that in the absence of the MP assumption, the inefficiency

is potentially unbounded.

Example 2. Consider a market with two workers and one unit demand firm, who values each

worker for 2. Each worker has a minimal salary of 1. Notice that MP is violated in this setting,

since the marginal production of each worker, given the other worker, is zero, while his minimal

salary is 1. Assigning both workers to the firm, with a salary of 1 to each worker, is a JS-stable

outcome. This outcome has zero welfare, while the optimal welfare is 1.

3.2 A Second Welfare Theorem

Our first analog of the second welfare theorem guarantees the existence of an efficient JS-stable

allocation for any set of production functions in FS. This theorem will later be generalized to the

slightly broader class of AFS production functions in the next subsection.

Theorem 3. Let (v, b) be a labor market. If vn ∈ FS for all n ∈ N , then for any efficient

assignment A there is a salary vector s such that (A, s) is a JS-stable allocation.

Given an efficient assignment, the proof shows that setting salaries to be supporting salary vectors

for the assignment yields a JS-stable allocation. Since production functions are in FS, such salary

vectors are guaranteed to exist.

Proof. We prove the claim for a salary-driven labor market. The proof for an arbitrary labor market

follows from Lemmas 5 and 6 in the Appendix.

Let A = (A1, · · · , An) be some efficient assignment. Theorem 1 implies that for each k ∈ N
there exists a supporting vector of salaries {skm}m∈Ak , for (vk, Ak). For any m ∈ M let n(m)

denote the firm for which m ∈ An(m) and set sm = s
n(m)
m . We show that the allocation (A, s) is

JS-stable. IR follows immediately from the definition of a supporting vector of salaries. We show

that an arbitrary coalition, (n,B), where B ⊂ M \ An, cannot be a blocking coalition. Denote

Rk = Ak ∩ B. As A is efficient vn(An ∪ B) +
∑

k 6=n v
k(Ak \ Rk) ≤

∑
k∈N v

k(Ak). Therefore

vn(An) + vn(B|An) ≤
∑

k∈N v
k(Ak) −

∑
k 6=n v

k(Ak \ Rk) = vn(An) +
∑

k 6=n v
k(Rk|Ak \ Rk). As

{skm}m∈Ak is a vector of supporting salaries for (vk, Ak) we have vn(B|An) ≤
∑

k 6=n v
k(Rk|Ak\Rk) ≤∑

k 6=n
∑

m∈Rk skm =
∑

m∈B sm, implying that (n,B) is not a blocking coalition.

3.3 On JS-stability and maximal sets of production functions

In the previous section we observed that if all production functions are in FS then the existence

of JS-stable allocations is guaranteed. In fact it was shown that any efficient assignment can be
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supported by a JS-stable allocation. A natural question now presents itself: is the class of FS

production functions maximal for these observations to hold? That is, can one go beyond FS

and still guarantee the existence of JS-stable allocations or even the existence of efficient JS-stable

allocations?

In this section we define a new class of valuations, AFS, that strictly contains FS, and that

supports efficient allocations by JS-stable salaries. We will motivate its definition by way of consid-

ering a couple of seemingly special scenarios. We will then show that AFS is in fact the maximal

class capable of supporting efficient allocations as JS-stable outcomes.

We start by highlighting one specific requirement (out of the many FS requirements) that

turns to be out essential to guaranteeing the existence of JS-stable outcomes. Specifically, this

is the requirement v(M) ≤ 1
|M |−1

∑
x∈M v(M \ x). Lemma 8 in the Appendix shows that if this

requirement is violated, we cannot guarantee existence of JS-stable outcomes. This observation

motivates the following definition:

Definition 7. A valuation u is called symmetrically fractionally subadditive if for any B ⊆M with

|B| ≥ 2,

u(B) ≤ 1

|B| − 1

∑
x∈B

u(B \ x).

Let SFS denote the set of all symmetric fractionally subadditive functions.

Note that for any subset of workers B, the collection of subsets (B \ x)x∈B is a fractional cover

of B using uniform weights 1
|B|−1 . Thus, any u ∈ FS must satisfy the required inequality in the

definition of SFS. In other words, FS ⊂ SFS.

We noted above that if the SFS requirement corresponding to B = M is violated, JS-stability

cannot be guaranteed. It turns out that this generalizes to any SFS requirement. If a single SFS

requirement is violated, JS-stability cannot be guaranteed. (See Proposition 2.)

A partial complement to these claims is also true: if all production functions are in SFS, and

there exists a single firm which is by far more productive than all other firms in the sense that

assigning all workers to this firm is an efficient assignment (hereinafter we refer to such a firm as a

superior firm), then an efficient JS-stable allocation exists.

Proposition 1. Let (v, b) be a labor market and assume firm n is superior. If vn ∈ SFS then

assigning all workers to firm n can be supported as a JS-stable allocation.

Proof. We prove the claim for a salary-driven labor market. As before, the proof for an arbitrary

labor market follows from Lemmas 5 and 6 in the Appendix.

Let A denote the assignment of all workers to n. A is efficient (as n is superior) hence for any

k 6= n and any m ∈ M , vk(m) + vn(M \m) ≤ vn(M) = vn(m|M \m) + vn(M \m). Therefore,

vk(m) ≤ vn(m|M \m). Now, set sm = vn(m|M \m) for every m ∈ M . We show that this salary

vector yields a JS-stable allocation. By Lemma 7 in the Appendix,

12



• vn(M) ≥
∑

m∈M vn(m|M \m) =
∑

m∈M sm, implying IR.

• ∀k 6= n and B ⊆ M , vk(B) ≤
∑

m∈B v
k(m) ≤

∑
m∈B v

n(m|M \m) =
∑

m∈B sm, implying

that there exist no blocking coalitions.

This proof establishes a second scheme to set salaries in JS-stable allocations. Recall that the

salary vector required for supporting an efficient assignment as a JS-stable allocation derived as in

Theorem 3 uses the full power of fractional subadditivity. The last proof has shown that devising

salaries when all workers are assigned to a superior firm requires less, namely that production

functions are in SFS (but not necessarily in FS).

On the other hand, if no superior firm exists then requiring all production functions to be in

SFS does not guarantee the existence of an efficient JS-stable allocation, as we now demonstrate.

Example 3. There are four salary-driven workers M = {a, b, c, d} and two firms N = {1, 2} with

corresponding production functions v1, v2 . The following table provides the production level for

nonempty subsets of {a, b, c}:

{a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

v1 5 3 3 6 6 6 9

v2 3 3 3 6 6 4 8

We additionally have (1) v1(d) = 1.1 and ∀S ⊆ M \ {d}, S 6= ∅, v1(d|S) = 0, (2) ∀S ⊆ M ,

v2(d|S) = 0. We leave it to the reader to verify that v1, v2 ∈ SFS. None of the firms is superior,

and in the unique efficient assignment, {d} works for firm 1 and {a, b, c} work for firm 2. To see

that this allocation cannot be made JS-stable, note that JS-stable salaries s for this allocation must

satisfy sa ≥ 3.9 (since v1(a|d) = 3.9) and sb + sc ≥ 4.9 (since v1(bc|d) = 4.9). However, we also

need sa + sb + sc ≤ v2(abc) = 8, a contradiction.

Theorem 3 and Proposition 1 describe two different schemes for devising salaries to support

efficient assignments as JS-stable allocations, depending on the presence or absence of a superior

firm. Combining these two schemes together gives the following class of production functions that is

strictly larger than FS and that still guarantees the existence of efficient and JS-stable allocations.

Definition 8. A firm’s production function v is almost fractionally subadditive, denoted v ∈ AFS ,

if:

1. For any C ⊂M (excluding C = M) v is fractionally subadditive on C, and

2. v(M) ≤ 1
|M |−1

∑
m∈M v(M \m).
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The first requirement corresponds to the requirements for FS on strict subsets of M and hence is

useful when an efficient assignment dictates that firms are assigned strict subsets of M . The second

requirement corresponds to the SFS requirement and hence is useful when an efficient assignment

assigns all workers to a single firm. Indeed, we have the following analog of the Second Welfare

Theorem which extends our earlier Theorem 3.

Theorem 4. Let (v, b) be a labor market. If vn ∈ AFS for all n ∈ N , then for any efficient

assignment A there is a salary vector s such that (A, s) is a JS-stable allocation.

Proof. If an efficient assignment A does not assign all workers to a single firm then the salary

scheme s devised in the proof of Theorem 3 guarantees that (A, s) is JS-stable. If A does assign all

workers to a single firm then this firm is superior and the result now follows from Proposition 1.

It immediately follows from the definition that FS ⊂ AFS ⊂ SFS. Note that AFS allows

for a certain type of complementarities: a single worker and the set of all other workers may be

complements. This is because we do not require fractional subadditivity to hold on the full set of

workers but only on strict subsets. The following example illustrates this complementarity.

Example 4. Assume there are 3 workers denoted a, b, c, and let the production function u be

defined by: u(a) = u(b) = u(c) = 3, u({a, b}) = u({a, c}) = 6, u({b, c}) = 4, u({a, b, c}) = 8. We

leave it to the reader to verify that u ∈ AFS but not in FS. Note that the worker a and the pair

{b, c} are complements.

The techniques developed so far for proving that any efficient assignment can also be supported

as a JS-stable allocation, as witnessed in the proof of Theorem 4, have motivated the notion of

AFS. Thus, one may suspect that it may be possible to extend the proof beyond AFS. It turns

out, quite surprisingly, that this is not the case and that the class of production functions AFS is

a “natural” class in the context of efficient JS-stable allocations, in the sense that it is a maximal

class with respect to aforementioned property. This is the content of our next result.

Theorem 5. If v̄ 6∈ AFS then there exists a labor market with salary-driven workers, in which one

firm has production function v̄ and the others have AFS production functions, such that there does

not exist any JS-stable allocation (A, s) in which A is an efficient assignment.

The proof is composed of two parts. We first show that if v /∈ SFS, JS-stable allocations need

not necessarily exist. We then show that if v ∈ SFS \AFS, efficient JS-stable allocations need not

necessarily exist.

Proposition 2. If v 6∈ SFS then there exist k ≤ 2n−1 unit-demand production functions u1, ..., uk

such that the salary-driven labor market with k + 1 firms, ((u1, ..., uk, v), 0), does not admit any

JS-stable allocation.
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The Appendix provides the proof of Proposition 2 and of the following two lemmas, which establish

properties of FS production functions that are needed in order to construct a production function

uε ∈ FS such that the labor market (v̄, uε) has no efficient JS-stable allocation.

Lemma 2. For any valuation v and positive number r, let v+r be the valuation defined as follows:

(v + r)(D) = v(D) + r, for all D ⊆ M . For any monotone valuation v, there exists some positive

number R such that for any r ≥ R, v + r ∈ FS.

Lemma 3. For any T ⊂ M let v|T (·) denote the restriction of v(·) to T . If v 6∈ FS and for some

proper subset T ⊂M , v|T ∈ FS then v(T ) < v(M).

We are now ready to prove Theorem 5; Example 3 provides some intuition for this proof.

Proof of Theorem 5. If for some B ⊆ M, v̄(B) >
∑

m∈B
v̄(B\m)
|B|−1 then the conclusion follows from

Proposition 2. Thus assume that for all B ⊂ M, v̄(B) ≤
∑

m∈B
v̄(B\m)
|B|−1 . As v̄ 6∈ AFS there exists

some proper subset T ⊂ M such that v̄|T 6∈ FS . In particular, let T be a minimal such subset.

By Lemma 3, for any T ′ that is a proper subset of T , v̄(T ′) < v̄(T ). In particular we may choose

ε̄ > 0 be such that for any T ′ that is a proper subset of T , v̄(T ′) + ε̄ < v̄(T ).

For any ε in the open interval (0, ε̄), we define the valuation uε on M as follows. Letting the

notation Dc denote the complementary set of D, i.e. Dc = M \D, we set uε(D) = r − v̄(Dc) for

all D 6= T c and uε(T c) = r − v̄(T ) + ε, where r = r(ε) is large enough to guarantee that uε ∈ FS .

(Here we are applying Lemma 2.) Monotonicity of uε is straightforward from the construction and

the choice of ε.

Allocating T to the firm with production function v̄ and T c to the firm with production function

uε is the unique optimal allocation. Note that it generates an efficiency level of r + ε whereas any

other allocation generates r.

Assume the theorem is false and that for any ε the unique optimal assignment of (v̄, uε) can

be supported by a JS-stable allocation ((T, T c), sε). By individual rationality,
∑

m∈T s
ε
m ≤ v̄(T ).

Increasing the salary of some single worker in T if necessary, we can assume without loss of generality

that
∑

m∈T s
ε
m = v̄(T ). For any D ⊆ T , JS-stability implies∑

m∈D
sεm ≥ uε(D|T c) = uε(D ∪ T c)− uε(T c) = v̄(T )− v̄(T \D)− ε =

∑
m∈T

sεm − v̄(T \D)− ε.

Therefore, for any D ⊆ T ,
∑

m∈T\D s
ε
m ≤ v̄(T \D) + ε. This can be equivalently stated as follows:

∑
m∈D

sεm ≤ v̄(D) + ε ∀D ⊆ T.

Let ε1, ε2, . . . be a decreasing sequence in the open interval (0, ε̄) with limn εn = 0, and let s

be an accumulation point of the set of salary vectors {sεn}∞n=1. Then
∑

m∈T sm = v̄(T ) and
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∑
m∈D sm ≤ v̄(D) ∀D ⊂ T which implies that s is a supporting vector of salaries for v̄|T on the

set T , contradicting the assumption that v̄|T 6∈ FS.

The results of this section leave open the question of the maximal set of production functions

that guarantee the existence of (possibly inefficient) JS-stable outcomes. In particular, we do

not know whether such an allocation necessarily exists in SFS \ AFS . We consider this to be a

very interesting and technically challenging problem for future research. More specifically, one can

easily verify that for three workers or less, the two classes AFS and SFS are the same. Hence, as a

corollary of Theorem 4 and Proposition 2 we know that for markets with three workers or less, AFS

is maximal with respect to the existence of JS-stable outcomes. With four or more workers, SFS

strictly contains AFS, and so it is possible that whenever production functions are in SFS \AFS,

efficient JS-stable allocations do not exist but still JS-stable (inefficient) allocations are guaranteed

to exist. This possibility is illustrated in the following example.

Example 5. Recall the market from Example 3. As argued v1, v2 ∈ SFS. On the other hand,

v2(abc) = 8 > 3+4 = v2(a)+v2(bc) and so v2 6∈ AFS. Recall that no efficient JS-stable allocations

exist. However, assigning all workers to firm 1 with salaries sa = sb = sc = 3 and sd = 0 is JS-stable

yet inefficient.

3.4 Summary of Results

The following table informally summarizes our main results while comparing them with the existing

literature on unregulated labor markets:

TYPE OF LABOR UNREGULATED REGULATED

MARKET (existing literature) (our contribution)

Solution concept Stable allocations JS-stable allocations

Set of production function GS AFS and SFS

First welfare theorem Stable allocations are efficient. JS-stable allocations obtain

half the maximal efficiency.

Second welfare theorem Pareto efficient allocations are Efficient allocations are

stable in GS. JS-stable in AFS.

Maximality Stable allocations are not Efficient JS-stable allocations

guaranteed outside GS. are not guaranteed outside

AFS. JS-stable allocations are

not guaranteed outside SFS.
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4 Concluding Remarks

In this work we introduce JS-stability as a new solution concept for many-to-one matching markets.

This concept is inspired by regulated labor markets where costs for firing employees are prohibitively

high. We identify a large and maximal family of production functions which are not guaranteed to

admit stable outcomes, yet JS-stable outcomes not only exist for these production functions but in

fact support all efficient outcomes. While JS-stability does not always guarantee efficiency, it does

guarantee at least 50% of the welfare of the first best outcome.

Our results can also shed light on markets with a single seller, many buyers and multiple goods

(combinatorial auctions), where buyers correspond to firms (replacing production functions with

valuation functions) and items correspond to workers. The assignment of workers to firms and the

salaries of workers in a stable outcome correspond to the assignment of items to buyers and the

prices of items in a Walrasian equilibrium. Our notion of job-security corresponds to an outcome

where buyers do not want additional items on top of the items in their bundle, but may want to

discard some of the items in their bundle. This solution concept may be useful in the context

of governmental auctions in heavily regulated markets (e.g., FCC auctions) where an important

concern of the designer is to set prices in a way that will eliminate a secondary market. Discarding

items is less of an issue in such markets, since in these markets the seller is free to bundle the items.

In such cases individual rationality will ensure that buyers accept the bundles offered to them.

Harnessing the many-to-one matching model for studying regulation in labor markets is novel,

to the best of our knowledge. Thus, our work may be viewed as the first step of a research agenda

that studies implications of regulatory intervention in labor markets. We highlight some natural

follow-up questions which we leave for future research.

A major concern in labor theory is the effect of job security on unemployment rates. On the

one hand, job security reduces layoffs, but on the other hand, at the hiring stage firms take job

regulations into account and so tend to hire less. It seems interesting to compare employment

levels in stable versus JS-stable outcomes, when both exist. In general, such comparative statics

can swing both ways. The following example demonstrates that JS-stable outcomes might exhibit

higher employment levels compared with a stable outcome of the same market.11

Example 6. There are two firms, A and B, and three workers a, b, c. Let bAa = 1 and bnm = 0

otherwise. Firm A has unit demand and vA(a) = 0, vA(b) = 1, vA(c) = 1.5. For firm B, vB(a) = 4,

vB(b) = 6, vB(c) = 2 and vB(X) = 6 for any set X of two or more workers. Note that matching

b with B and c with A, both at zero salary, is a stable matching which leaves a unemployed. On

the other hand matching b with A at a salary of 1, a and c with B at salaries 4 and 2, respectively,

yields a JS-stable outcome with no unemployment. (Note that this matching is not efficient nor

stable as B and b at a salary of 5 is a blocking coalition.)

11We thank Fuhito Kojima for suggesting this example.
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Another recent trend in labor theory is to study the implications of a requirement for severance

payments when firms lay off employees, e.g., as suggested in Blanchard and Tirole (2008). In

fact, some countries, like Denmark, already implement such a policy (Andersen, 2012). It will be

interesting to replace the notion of JS-stability with an alternative solution concept which models

more moderate regulation than tenure within the framework of many-to-one matching models.

The research agenda may well go beyond severance payments and study other regulatory means

designed for job protection and job security such as insurance institutions.

Some of our results refer to a cardinal notion of efficiency. For this notion to make sense we

require that all utilities, for firms and for workers, are given in the same “currency”. As a result our

model assumes that firms’ and workers’ utilities are given in terms of money. Whereas for firms this

is natural (as we identify utility with profits), for workers this is a limitation. Therefore, a study

of JS-stability is called for when workers’ utility functions go beyond additive-separable functions.

This is particularly important if one would like to account for uncertainty without assuming workers

are necessarily risk neutral.

The solution concept we focus on, JS-stability, is based on the nonexistence of blocking coalitions

composed of a single firm and some workers. However, a JS-stable allocation can conceivably allow

for a situation in which several firms could shuffle their current joint set of workers and possibly

recruit additional workers to obtain an outcome that is better for all involved. Such a possibility

may imply that what we refer to as a JS-stable allocation may not necessarily be stable, even when

job-security provisions are instated. Thus, a stronger definition of stability, in the spirit of the core

of a cooperative game, may be called for. This definition is provided in an extended version of

the paper, which appears online (Fu et al., 2015). The extended version also makes a connection

between JS-stable outcomes and Nash equilibria of a game where workers are assigned to firms

through simultaneous second price auctions.

Appendix

A Salary-driven workers

One primitive of our model is the existence of minimal salaries. This allows for heterogeneity in

the workers’ utility across firms. Given the separable additive nature of workers’ utility, it is not

too surprising that for the purpose of our results one can assume that, without loss of generality,

such minimal wages are fixed at zero and, in fact, utilities are homogeneous. In this appendix we

formalize and prove this intuition.

Lemma 4. Let (N,M, v, b) be a labor market satisfying the marginal productivity assumption

(MP) and let (A, s) be an arbitrary allocation. Then for any firm n, and any Y ⊂ An, v(An) −∑
m∈An sm ≥ v(An \ Y )−

∑
m∈An\Y sm −

∑
m∈Y max(sm − bnm, 0).
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Note that the left-hand side is the profit of firm n at the allocation (A, s). Also note that a firm

must pay its employee m at least max(sm − bnm, 0) in order to induce him to quit. Therefore, the

right-hand side is the same firm’s profit if it pays some workers (those in an arbitrary set Y ⊂ An)

in order to quit.

Proof. From MP we get that v(An) − v(An \ Y ) ≥
∑

m∈Y b
n
m. Subtracting

∑
m∈An sm on both

sides gets us v(An)−
∑

m∈An sm ≥ v(An \ Y )−
∑

m∈An sm +
∑

m∈Y b
n
m where the right hand side

is simply equal to v(An \ Y ) −
∑

m∈An\Y sm −
∑

m∈Y (sm − bnm). This is larger than v(An \ Y ) −∑
m∈An\Y sm −

∑
m∈Y max(sm − bnm, 0) and the result follows.

Definition 9. If (v, b) is some labor market, we denote by (v − b, 0) a labor market with salary-

driven workers and production functions (v − b)n(B) = vn(B)−
∑

m∈B b
n
m.12 Similarly, if (A, s) is

some allocation then s− b is the following vector of salaries: if m ∈ Ak then (s− b)m = sm − bkm.

Lemma 5. Fix any C ⊂ M , any production function v, and any vector of minimal salaries b.

Then, {λD}D⊆C,D 6=∅ is a fractional cover of v on C if and only if it is a fractional cover of v − b
on C. This immediately implies that v ∈ FS if and only if v − b ∈ FS, v ∈ AFS if and only if

v − b ∈ AFS, and v ∈ SFS if and only if v − b ∈ SFS.

Proof. We prove the first direction. Let {λD}D⊆C,D 6=∅ be a fractional cover of v on C, and so∑
m∈C bm =

∑
D⊆C,D 6=∅ λD

∑
m∈D bm. Consequently

(v − b)(C) = v(C)−
∑
m∈C

bm ≤
∑

D⊆C,D 6=∅

λDv(D)−
∑

D⊆C,D 6=∅

λD
∑
m∈D

bm =
∑

D⊆C,D 6=∅

λD(v − b)(D),

implying that v − b is fractionally subadditive on C. The opposite direction of the proof is similar

and hence omitted.

Lemma 6. The labor markets (v, b) and (v − b, 0) obey the following relations.

• P(v,b)(A) = P(v−b,0)(A). In particular, A is an efficient assignment for (v − b, 0) if and only

if it is an efficient assignment for (v, b).

• (A, s) is IR for (v, b) if and only if (A, s− b) is IR for (v − b, 0).

• (n,C) is a blocking coalition for the allocation (A, s) (in the market (v, b)) if and only if it is

a blocking coalition for the allocation (A, s− b) in the labor market (v − b, 0).

• (A, s) is a JS-stable in (v, b) if and only if (A, s− b) is JS-stable (v − b, 0).

12The MP assumption implies that (v − b)n remains monotone.
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Proof. The first statement follows using a straightforward calcualtion which is therefore omitted.

To prove the second statement, let (A, s) be an IR allocation for (v, b). Then, for each firm n,

vn(An) ≥
∑

m∈An sm which can be rewritten as (v−b)n(An) ≥
∑

m∈An(sm−bnm) =
∑

m∈An(s−b)m.

In addition, for each worker m, sm ≥ bnm, where m ∈ An. Equivalently , (s− b)m ≥ 0 which means

that (A, s− b) is IR for (v− b, 0). The proof of the opposite direction is similar and hence omitted.

To prove the third statement, assume that (n,C) is a blocking coalition for (A, s) in the labor

market (v, b). Then there exists some vector of salaries {ŝm}m∈C such that:

• ŝm − bnm ≥ sm − bkm for all k and for all m ∈ C ∩Ak,

• vn(C|An) ≥
∑

m∈C ŝm, implying (v − b)n(C|An) ≥
∑

m∈C ŝm − bnm

with at least one of the inequalities being strict. Now set s̄m = ŝm − bnm for all m ∈ C. The above

system of inequalities is equivalent to:

• s̄m ≥ sm − bkm = (s− b)m for all k and for all m ∈ C ∩Ak,

• (v − b)n(C|An) ≥
∑

m∈C s̄m,

with at least one of the inequalities being strict, implying the desired conclusion. The proof of the

opposite direction is similar and hence omitted.

The fourth statement is a direct consequence of the previous two claims.

B Proof of Theorem 2

Theorem 2. If (A, s) is JS-stable and Ā is efficient, then P (A) ≥ 1
2P (Ā).

Proof. We first prove our result for labor markets with salary-driven workers, denoted (v, 0). Indeed,

for every firm n we have vn(Ān \An|An) ≤
∑

m∈Ān\An sm. Thus, we have

vn(Ān) ≤ vn(Ān ∪An) ≤
∑

m∈Ān\An

sm + vn(An).

Therefore

n∑
i=1

vn(Ān) ≤
n∑
i=1

 ∑
m∈Ān\An

sm + vn(An)

 ≤ n∑
i=1

 ∑
m∈Ān

sm + vn(An)



≤
∑
m∈M

sm +

n∑
i=1

vn(An) =

n∑
i=1

∑
m∈An

sm +

n∑
i=1

vn(An) ≤ 2

n∑
i=1

vn(An),

where the last inequality follows from (IR) of the assignment A = (An)n∈N . This proves the claim

for labor markets with salary-driven workers.
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Now let (A, s) be a JS-stable allocation for an arbitrary labor market (v, b) and let Ā be an

efficient assignment for (v, b). By Lemma 6, (A, s− b) is a JS-stable allocation for (v − b, 0) and Ā

is efficient for (v − b, 0). Now:

P(v,b)(A) = P(v−b,0)(A) ≥ 1

2
P(v−b,0)(Ā) =

1

2
P(v,b)(Ā),

where the left and right equalities follow again from Lemma 6 and the inequality follows from the

first part of the proof.

C Proofs deferred from Section 3.3

The following lemma is required in the proof of Proposition 1.

Lemma 7. If u ∈ SFS then for all B ⊆M ,∑
m∈B

u(m|B \m) ≤ u(B) ≤
∑
m∈B

u(m).

As a partial converse, if
∑

m∈B u(m|B \m) ≤ u(B) for all B ⊆M then u ∈ SFS.

Proof. The left inequality is straightforward since∑
m∈B

u(m|B \m) =
∑
m∈B

[u(B)− u(B \m)] = |B| · u(B)−
∑
m∈B

u(B \m).

The same calculation proves the partial converse.

To prove the right inequality we proceed by induction on |M |. The claim trivially holds for

|M | = 1. For |M | > 1 and any B strictly contained in M we have the required property by the

inductive assumption, since the restriction of u to the set of workers B is also a production function

in SFS, and the inductive assumption holds for this production function. Thus, we only need to

prove the property for B = M . Indeed,

u(M) ≤
∑

m∈M u(M \m)

|M | − 1
≤
∑

m∈M
∑

k∈M\m u(k)

|M | − 1
=
∑
k∈M

u(k),

as claimed.

Lemma 8. If a production function v has v(M) > 1
|M |−1

∑
x∈M v(M \ x), there exists a unit-

demand valuation u such that the salary-driven market made up of two firms having production

functions u and v does not have any JS-stable allocation.

Proof. By rearranging v(M) > 1
|M |−1

∑
x∈M v(M \ x) we also have

∑
x∈M v(x|M \ x) > v(M).

Now define a unit-demand valuation u as follows. Choose a small enough ε > 0 such that (i)
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∑
x∈M (v(x|M \ x)− ε) > v(M), and (ii) ∀x ∈M such that v(x|M \ x) > 0, ε < v(x|M \ x). Then

define u(x) = max(0, v(x|M \ x)− ε) for all x ∈M .

We show that there does not exist a JS-stable allocation for the salary-driven labor market

whose two firms have production functions u and v. Suppose towards a contradiction that there

exists a JS-stable allocation (A, s). If u(Au) = 0 (and thus u(x) = 0 for all x ∈ Au), we have∑
x∈Av

sx ≤ v(Av) ≤ v(M) <
∑
x∈M

(v(x|M \ x)− ε) ≤
∑
x∈Av

u(x).

Thus, there exists a worker x ∈ Av with sx < u(x), and JS-stability is violated. Otherwise,

u(Au) > 0. Let x∗ = arg maxx∈Au u(x), then u(x∗) = v(x∗|M \ x∗) − ε. Since
∑

x∈M\Av sx =∑
x∈Au sx ≤ u(x∗) we have,

v(M \Av|Av)−
∑

x∈M\Av

sx > v(M \Av|Av)− v(x∗|M \ x∗) = v(M \ x∗)− v(Av) ≥ 0,

where the last inequality follows since Av ⊆M \ x∗. Once again this contradicts JS-stability.

Proposition 2. If v 6∈ SFS then there exist k ≤ 2n−1 unit-demand production functions u1, ..., uk

such that the salary-driven labor market with k + 1 firms, ((u1, ..., uk, v), 0), does not admit any

JS-stable allocation.

Proof. Since v /∈ SFS , Lemma 7 implies that there exists B ⊆M such that
∑

x∈B v(x|B\x) > v(B).

We construct the following tuple of unit-demand valuations. For every worker x ∈M \B we have

two unit-demand valuations u
(1)
x = u

(2)
x such that u

(i)
x (x) = v(M) + 1 and v

(i)
x (y) = 0 for any

worker y 6= x. Additionally let uB be a unit-demand valuation defined similiarly to the unit-

demand valuation in the proof of Lemma 8, namely uB(x) = max(0, u(x|B \ x) − ε) for all x ∈ B
and otherwise uB(x) = 0. We argue that there does not exist a JS-stable allocation for this

labor market. Note that in every possible JS-stable allocation in this labor market, every worker

x ∈ M \ B must be allocated to either the firm with valuation v
(1)
x or v

(2)
x and its salary must be

v
(1)
x (x). Thus, the set of workers assigned to either v or uB is exactly B. The argument in Lemma 8

now shows that such an allocation cannot be JS-stable.

Lemma 2. For any valuation v and positive number r, let v+r be the valuation defined as follows:

(v + r)(D) = v(D) + r, for all D ⊆ M . For any monotone valuation v, there exists some positive

number R such that for any r ≥ R, v + r ∈ FS.

Proof. If v(M) = 0, then v is already in FS. Otherwise, let R be (|M |−1)v(M), and we show for any

r ≥ R that v + r ∈ FS, by constructing supporting salary vectors (Definition 6) for every S ⊆M .

For S ⊆M consider the vector s ∈ RS , where sx = r+v(S)
|S| , for each x ∈ S. It is straightforward to
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see that
∑

x∈S sx = r + v(S) = (v + r)(S). Then for any proper subset T ( S,

(v + r)(T ) ≥
∑
x∈T

r

|T |
=
∑
x∈T

r · |S|
|T |
· 1

|S|
≥
∑
x∈T

r

(
1 +

1

|M | − 1

)
· 1

|S|
≥
∑
x∈T

r + v(S)

|S|
=
∑
x∈T

sx.

In the second inequality we used the fact |S||T | ≥
|M |
|M |−1 , and in the last inequality we used the fact

r ≥ R ≥ (|M | − 1)v(S). This shows that indeed s is a supporting salary vector, and therefore v+ r

is in FS by Theorem 1.

Lemma 3. For any T ⊂ M let v|T (·) denote the restriction of v(·) to T . If v 6∈ FS and for some

proper subset T ⊂M , v|T ∈ FS then v(T ) < v(M).

Proof. For the sake of contradiction, suppose that for some T ( M , v(T ) = v(M) yet v|T ∈ FS.

Then there exists a supporting salary vector s on T . We extend s by setting sm = 0 for all

m ∈M \ T , and we argue that we obtain a supporting salary vector for M , contradicting v /∈ FS .

To see this, observe that
∑

x∈M sx =
∑

x∈T sx = v(T ) = v(M), and for any S ( M ,
∑

x∈S sx =∑
x∈S∩T sx ≤ v(S ∩ T ) ≤ v(S).
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