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Abstract

If a two-player social welfare maximization problem does not admit a PTAS, we prove that
any maximal-in-range truthful mechanism that runs in polynomial time cannot achieve an ap-
proximation factor better than 1/2. Moreover, for the k-player version of the same problem, the
hardness of approximation improves to 1/k under the same two-player hardness assumption.
(We note that 1/k is achievable by a trivial deterministic maximal-in-range mechanism.) This
hardness result encompasses not only deterministic maximal-in-range mechanisms, but also all
universally-truthful randomized maximal in range algorithms, as well as a class of strictly more
powerful truthful-in-expectation randomized mechanisms recently introduced by Dobzinski and
Dughmi. Our result applies to any class of valuation functions that satisfies some minimal
closure properties. These properties are satisfied by the valuation functions in all well-studied
APX-hard social welfare maximization problems, such as coverage, submodular, and subadditive
valuations.

We also prove a stronger result for universally-truthful maximal-in-range mechanisms. Namely,
even for the class of budgeted additive valuations, which admits an FPTAS, no such mechanism
can achieve an approximation factor better than 1/k in polynomial time.



1 Introduction

Do computational problems become harder when the inputs are supplied by selfish agents and the
algorithm is required to operate in a way that incentivizes truth-telling? This question has been
central to algorithmic mechanism design since the field’s inception [14]. The most famous positive
result in the area is also one of the simplest: any efficient social-welfare-maximization algorithm can
be transformed into a computationally efficient truthful mechanism using the celebrated VCG pay-
ment scheme [6, 11, 17]. It is also well known that this result does not extend to approximation al-
gorithms: in order for an algorithm to be truthfully implemented by the VCG payment scheme, the
algorithm must satisfy a property known as maximal-in-range (MIR) [15], which is unfortunately
violated by most approximation algorithms. However, the technique of combining a maximal-in-
range algorithm with the VCG payment scheme remains the only known general-purpose technique
for designing truthful mechanisms for multi-parameter domains1, and consequently a great deal of
research has been devoted to searching for computationally efficient approximation algorithms that
are maximal-in-range, e.g. [9, 10, 12], or proving hardness-of-approximation theorems for this class
of algorithms, e.g. [8, 13, 16].

Combinatorial auctions are the most well-studied, and arguably the most important, class of
mechanism design problems, and they furnish striking insights into the capabilities and limitations
of maximal-in-range mechanisms. One can bound the approximation ratio of a combinatorial
auction mechanism in terms of many parameters, including the number of players (henceforth
denoted by k) or the number of items (henceforth, m). A particularly bleak picture emerges when
one bounds the approximation ratio in terms of the number of players. Any combinatorial auction
with k players has a trivial mechanism that simply packages all the items as a single bundle and
awards this bundle to the bidder who values it most highly. This mechanism is computationally
efficient, maximal in range, but only achieves approximation ratio 1/k. Despite years of research
on truthful combinatorial auctions, to our knowledge this dependence on k can be improved in
only one combinatorial auction domain: the domain of multi-unit auctions. Here, the underlying
social welfare maximization problem admits a deterministic FPTAS that is not maximal-in-range.
Dobzinski and Nisan [9] discovered a deterministic 2-approximation that is MIR, and Dobzinski
and Dughmi [7] discovered an FPTAS that outputs a randomized allocation satisfying a property
called maximal in distributional range (MIDR). In fact, the Dobzinski-Dughmi mechanism satisfies
a stronger property that we call maximal in weighted range (MIWR), meaning that the only use of
randomization is to cancel the allocation (i.e., allocate no items) with some probability.

1.1 Our contributions

In this paper we show that there is an inherent reason why truthful mechanisms cannot break the
“1/k barrier” for combinatorial auctions: any approximation hardness at all in the underlying social
welfare maximization problem is amplified to (1/k+ ǫ)-hardness when one restricts the algorithm to
be maximal in range. In fact, our result extends to two classes of randomized MIDR mechanisms:
those that choose an allocation deterministically and then toss coins to decide whether to cancel the
allocation (MIWR mechanisms) and those that toss coins to choose a deterministic MIR mechanism
and then run it (randomized MIR mechanisms), as well as the combination of the two. Our result
applies to any class of valuations that is regular, meaning that it satisfies some natural closure

1A multi-parameter domain is one in which an agent’s private information consists of more than just a single

real-valued parameter.
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properties to be specified in Section 2. These properties are satisfied by the valuation functions
in all well-studied APX-hard social welfare maximization problems, such as coverage, submodular,
XOS, and subadditive valuations.

Theorem 1.1. Let C be any regular class of valuations such that two-player social welfare maximiza-
tion with valuations in C does not admit a PTAS. Then for all ǫ > 0, there is no polynomial-time
randomized MIWR mechanism that achieves an approximation ratio greater than 1/k + ǫ unless
NP ⊆ P/poly.

Even when social welfare maximization over C admits an FPTAS, it may still be possible to
prove that maximal-in-range mechanisms cannot improve on the trivial 1/k approximation factor.
In fact, we are able to show this for an important class of valuations that admits an FPTAS: the
class of budgeted additive valuations, in which each player i has a budget Bi, and her value for a
bundle is equal to the sum of her values for the individual items, or to Bi, whichever is smaller.
However, unlike Theorem 3.1, this hardness result is limited to universally-truthful randomized
maximal-in-range mechanisms.

Theorem 1.2. For all ǫ > 0, no polynomial-time randomized MIR mechanism for combinatorial
auctions with budgeted additive valuations can achieve an approximation ratio greater than 1/k+ ǫ,
unless NP ⊆ P/poly.

1.2 Our techniques

A paradigm for proving hardness results of this sort was introduced by Papadimitriou, Schapira,
and Singer in [16]. To prove that a certain approximation ratio cannot be achieved by maximal-
in-range mechanisms, one proves that the underlying social welfare maximization problem exhibits
a particularly strong form of self-reducibility: any maximal-in-range algorithm for optimizing over
a sufficiently large subset of allocations can be transformed into an algorithm for optimizing over
all allocations of a smaller set of items. The technical core of any such proof is a lemma showing
that any sufficiently large range of allocations must “shatter” a fairly large subset S of the items,
meaning that there is a set of players P such that all allocations of S to P occur in the range.
In [16] the relevant shattering lemma was the famous Sauer-Shelah Lemma. But since the Sauer-
Shelah Lemma is a statement about collections of a subsets of a ground set U , and the range of a
combinatorial auction is a collection of partial functions from U to the set of players, we require
new shattering lemmas that apply to partial functions.

Extending the Sauer-Shelah Lemma to partial functions is far from trivial: a lower bound on the
cardinality of the range does not suffice to prove that it shatters a large set of items; for example,
the set of all allocations that give a subset of the items to player 1 and no items to any other player
constitutes an exponentially large range but does not shatter any nonempty set of items. Thus,
one needs to carefully define what is meant by the hypothesis that the range is “large”, and also
(in the case of more than two players) what is meant by the conclusion that it “shatters” a large
set of items. In this paper, we provide two such lemmas. In both of them, U and V are finite sets
with |U | = m, |V | = k, and R is a set of functions from U to V ∪ {∗}.
Lemma 1.3. Suppose that for a random f : U → V , with probability at least γ there is a g ∈ R

such that g(x) differs from f(x) on at most
(

1 − q−1
k − ǫ

)

m elements x ∈ U . Then there is a

subset S ⊆ U of cardinality at least δm (where δ > 0 may depend on γ, ǫ, q, k) and a subset T ⊆ V
of cardinality q, such that every function from S to T occurs as the restriction of some g ∈ R.
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Lemma 1.4. Suppose that ǫ, α, ℓ are constants such that |R| > eαm, and suppose that for every
ℓ-tuple of functions g1, . . . , gℓ ∈ R, for some 1 ≤ i < j ≤ ℓ there are at least ǫm elements x ∈ U
such that gi(x) and gj(x) are distinct elements of V . Then there is a subset S ⊆ U of cardinality
at least δm (where δ > 0 may depend on ǫ, α, ℓ, k) and a pair of elements a, b ∈ V , such that every
function from S to {a, b} occurs as the restriction of some g ∈ R.

The first lemma, which underlies our proof of Theorem 3.1 and may be of independent interest,
substitutes an assumption that R has small covering radius in the Hamming metric in place of the
usual assumption that R has large cardinality. The second lemma, which underlies our proof of
Theorem 1.2, generalizes and closely parallels a related lemma from [13]. We prove both lemmas
in Appendix A.

To derive the lower bound for MIWR mechanisms, an additional idea is needed: rather than
reducing directly converting an α-approximate MIR algorithm into an exact optimization algorithm
over a smaller set of items, we convert an (α − δ)-approximate MIWR algorithm into an (α + δ)-
approximate MIWR algorithm over a smaller set of items, and then we reach a contradiction by
taking α to be the supremum of the approximation ratios achievable by polynomial-time MIWR
mechanisms. Translating this idea into a rigorous proof requires a delicate induction over the
number of players. Finally, to extend the result to randomized MIWR mechanisms, we show that
any randomized MIWR mechanism can be transformed into a MIWR mechanism with polynomial
advice, incurring a negligible loss in the approximation factor. The proof of this step closely parallels
Adleman’s proof that BPP ⊆ P/poly.

1.3 History of these results

Our work builds on the work of [13], which obtained a weaker version of Theorem 1.2, also using
the “shattering” technique. Independently and concurrently with our discovery of Theorem 1.2,
a different proof of a similar result (limited to deterministic mechanisms, but obtaining optimal
dependence on the number of items as well as players) was discovered by Buchfuhrer and Umans [5].
Our Lemma A.5, which constitutes a step in the proof of Theorem 3.1 and was discovered after
we had read the proof of the Buchfuhrer-Umans result, uses a counting argument similar to their
proof of a seemingly unrelated shattering lemma in [5].

2 Preliminaries

We assume the reader is familiar with standard terminology and notation regarding truthful mech-
anisms and approximation algorithms. Appendix D contains the relevant definitions.

2.1 Combinatorial Auctions

In a combinatorial auction there is a set [m] = {1, 2, . . . ,m} of items, and a set [k] = {1, 2, . . . , k}
of players. Each player i has a valuation function vi : 2[m] → R

+ that is normalized (vi(∅) = 0) and
monotone (vi(A) ≤ vi(B) whenever A ⊆ B).

An allocation of items M to the players N is a function S : M → N ∪ {∗}. Notice that we do
not require all items to be allocated. If an allocation S allocates all items – i.e. S maps M into N –
we say S is a total allocation. The allocation that allocates no items is called the empty allocation.
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For convenience, we use S(j) to denote the player receiving item j, and we use Si to denote the
items allocated to player i. We use X (M,N) to denote the set of all alocations of M to N .

In combinatorial auctions, the feasible solutions are the allocations X ([m], [k]) of the items to
the players. The social welfare of such an allocation S is defined as

∑

i vi(Si). When the players
have values {vi}i, we often use v(S) as shorthand for the welfare of S. The goal in combinatorial
auctions is to find an allocation that maximizes the social welfare.

2.2 Valuation Classes

The hardness of designing truthful combinatorial auction mechanisms depends on the allowable
player valuations. Recall that a valuation over M is a function v : 2M → R

+. We let V denote the
set of all valuations over all abstract finite sets M . A valuation class C is a subset of V. Examples of
valuation classes include submodular valuations, subadditive valuations, single-minded valuations,
etc. Our first result applies to any valuation class that satisfies some natural properties.

Definition 2.1. We a say a valuation class C is regular if the following hold

1. Every valuation in C is monotone and normalized.

2. The canonical valuation on any singleton set is in C. Namely, for any item a the valuation
v : 2{a} → R

+, defined as v({a}) = 1 and v(∅) = 0, is in C.

3. Closed under scaling: Let v : 2M → R
+ be in C, and let c ≥ 0. The valuation v′ : 2M → R

+,
defined as v′(A) = c · v(A) for all A ⊆ M , is also in C.

4. Closed under disjoint union: Let M1 and M2 be disjoint sets. Let the valuations v1 : 2M1 →
R

+ and v2 : 2M2 → R
+ be in C. Their disjoint union v3 = v1 ⊕ v2 : 2M1∪M2 → R

+, defined as
v3(A) = v1(A ∩ M1) + v2(A ∩ M2) for all A ⊆ M1 ∪ M2, is in C.

5. Closed under relabeling: Let M1,M2 be sets with a bijection f : M2 → M1. If v1 : 2M1 → R
+

is in C, then the valuation v2 : 2M2 → R
+ defined by v2(S) = v1(f(S)) is also in C.

Note that all regular valuation classes support zero-extension. More formally, let M ⊆ M ′, and
let v : 2M → R+ be in C. The extension of v to M ′, defined as v′(A) = v(A ∩ M) for all A ⊆ M ′,
is also in C. In the context of combinatorial auctions, we use Cm to denote the subset of valuation
class C that applies to items [m].

Most well-studied valuation classes for which the underlying optimization problem is APX-hard
are regular. This includes submodular, subadditive, coverage, and weighted-sum-of-matroid-rank
valuations. However, two interesting counter-examples come to mind: multi-unit (where items are
indistinguishable), and single-minded valuations. Nevertheless, the underlying optimization prob-
lem is not APX hard for multi-unit valuations, and for single-minded valuations the computational
hardness of approximation is 1/k1−ǫ even without the extra constraint of truthfulness (see [4]).

Our second hardness result pertains to deterministic mechanisms for a very simple, non-regular
class: budgeted additive valuations. This is despite the fact that the underlying k-player optimiza-
tion problem admits an FPTAS [2]. Budgeted additive valuations are defined as follows.

Definition 2.2. We say a valuation v : 2M → R
+ is budgeted additive if there exists a constant

B ≥ 0 (the budget) such that v(A) = min(B,
∑

i∈A v({i})).
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2.3 MIR, Randomized MIR, MIDR, and MIWR

Maximal in range (MIR) algorithms were introduced in [15] as a paradigm for designing truthful
approximation mechanisms for computationally hard problems. An algorithm A is maximal-in-
range if it induces a maximal-in-range allocation rule when k and m are fixed.

Definition 2.3. A k-bidder, m-item allocation rule f is maximal-in-range (MIR) if there exists a
set of allocations R ⊆ X ([m], [k]), such that ∀v1, . . . , vk f(v1, ..., vk) ∈ arg maxS∈R Σivi(Si).

A generalization of maximal-in-range that uses randomization sometimes yields better algo-
rithm. An algorithm A is randomized maximal-in-range if it induces a maximal-in-range allocation
rule for every realization of its random coins. It is well known a randomized MIR algorithm can
be combined with the VCG payment scheme to yield universally truthful mechanisms.

Dobzinski and Dughmi defined a generalization of randomized maximal-in-range algorithms
in [7], termed maximal-in-distributional-range (MIDR). Here, each element of the range is a dis-
tribution over allocations. The resulting mechanism outputs the distribution in the range that
maximizes the expected welfare, and charges VCG payments.

Definition 2.4. f is maximal-in-distributional-range (MIDR) if there exists a set D of distribu-
tions over allocations such that for all v1, . . . , vk, f(v1, ..., vk) is a distribution D ∈ D that maximizes
the expected welfare of a random sample from D.

MIDR algorithms were used in [7] to obtain a polynomial-time truthful-in-expectation FPTAS
for multi-unit auctions, despite a lower bound of 2 on polynomial-time maximal-in-range algo-
rithms. Moreover, they exhibited a variant of multi-unit auctions for which an MIDR FPTAS
exists, yet no deterministic (or even universally truthful) polynomial time mechanism can attain
an approximation ratio better than 2. Notably, the MIDR algorithms presented in [7] are of the
following special form.

Definition 2.5. f is maximal in weighted range (MIWR) if f is MIDR, and moreover each
distribution D in the range of f is a weighted allocation: There is a pure allocation S ∈ X ([m], [k])
such that D outputs S with some probability, and the empty allocation otherwise.

We denote a weighted allocation that outputs S with probabiliby w by the pair (w,S). When
there is room for confusion, we use the term pure allocation to refer to an unweighted allocation.

Our first result will apply to all polynomial time MIWR mechanisms, and is the first such
negative result. In fact, this result also applies to any randomization over MIWR mechanisms,
a class we term randomized MIWR mechanisms. Randomized MIWR mechanisms include all
universally-truthful randomized MIR mechanisms as a special case. Our second result will apply to
only randomized maximal-in-range mechanisms, yet applies to a very restricted class of valuations,
namely budgeted-additive valuations.

2.4 Some Complexity Theory

Broadly speaking, our proof involves constructing a reduction that transforms every instance of a
k-player mechanism design problem into an instance of one of k other problems P1, . . . ,Pk, each
of which individually is presumed to be computationally hard. The reduction has the property
that input instances with a given number of items, m, are all transformed into inputs of the same
problem Pi, but instances with a different number of items may map to a different one of the k
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problems. This raises difficulties because the complexity of P1, . . . ,Pk may be “wild”: for each
of them, there may be some input sizes (perhaps even infinitely many) that can be solved by a
polynomial-sized Boolean circuit. In this section we develop the relevant complexity-theoretic tools
to surmount this obstacle. We relegate the proofs of these results to Appendix C.

Definition 2.6. A set S ⊆ N is said to be complexity-defying (CD) if there exists a family of
polynomial-sized Boolean circuits {Cn}n∈N such that for all n ∈ S, the circuit Cn correctly decides
3sat on all instances of size n.

A set T ⊆ N is said to be polynomially complexity-defying (PCD) if there exists a complexity-
defying set S and a polynomial function p(n) such that T ⊆ ⋃n∈S[n, p(n)]. Here [a, b] denotes the
set of all natural numbers x such that a ≤ x ≤ b. If a set U ⊆ N is not PCD, we say it is non-PCD.

Lemma 2.7. A finite union of CD sets is CD, and a finite union of PCD sets is PCD.

Definition 2.8. A decision problem or promise problem is said to have the padding property if
for all n < m there is a reduction that transforms instances of size n to instances of size m,
running in time poly(m) and mapping “yes” instances to “yes” instances and “no” instances to
“no” instances. Similarly, an optimization problem is said to have the padding property if for all
n < m there is a reduction that transforms instances of size n to instances of size m, running in
time poly(m) and preserving the optimum value of the objective function.

Lemma 2.9. Suppose that L is a decision problem or promise problem that has the padding property
and is NP-hard under polynomial-time many-one reductions. Let T be any subset of N. If there is
a polynomial-sized circuit family that decides L correctly whenever the input size belongs to T , then
T is PCD.

Lemma 2.10. If N is PCD, then NP ⊆ P/poly .

2.5 Technical Assumptions For Main Result

For our main result, a note is in order on the representation of valuation. Our results hold in
the computational model. Therefore, we may assume that valuation functions are succint, in that
they are given as part of the input, and can be evaluated in time polynomial in the length of their
description. Naturally, our main result applies to non-succint valuations with oracle access, when
the resulting problem admits a suitable reduction from an APX hard optimization problem.

Moreoever, due to the generality of our main result, we need to make some technical assump-
tions. Namely, we restrict our attention to Combinatorial Auctions over a well-behaved family of
instances. This restriction is without loss of generality for all well-studied classes of valuations
for which the problem is APX-hard, such as coverage, submodular, etc. A family I of inputs to
Combinatorial auctions is well-behaved if there exists a polynomial b(m) such that for each input
(k,m, v1, . . . , vk) ∈ I, the function vi is represented as a bit-string of length O(b(m)), and moreover
always evaluates to a rational number with O(b(m)) bits. While we believe this assumption may be
removed, we justify it on two grounds: First, every well-studied variant of combinatorial auctions
that is APX hard is also APX hard on a well-behaved family of instances, so this restriction is
without loss for all such variants. Second, this assumption greatly simplifies our proof, since it
allows us to describe the size of an instance by a single parameter, namely m.
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3 Amplified Hardness for APX-Hard Valuations

In this section, we prove the following main result.

Theorem 3.1. Fix a regular valuation class C for which 2-player social welfare maximization is
APX-hard. Fix a constant k ≥ 1. For any constant ǫ > 0, no polynomial-time randomized MIWR
algorithm for k-player combinatorial auctions achieves an expected approximation ratio of 1/k + ǫ,
unless NP ⊆ P/Poly.

It is worth noting that this impossibility result applies to all universally-truthful randomized
maximal-in-range algorithms. First, we prove the analogous result for MIWR mechanisms that
take polynomial advice.

Theorem 3.2. Fix a regular valuation class C for which 2-player social welfare maximization is
APX-hard. Fix a constant k ≥ 1. For any constant ǫ > 0, no non-uniform polynomial-time MIWR
algorithm for k-player combinatorial auctions achieves an expected approximation ratio of 1/k + ǫ,
unless NP ⊆ P/Poly.

We then complete the proof by showing that any randomized MIWR mechanism can be “de-
randomized” to one that takes polynomial advice.

A word is in order on the notion of non-uniform computation. For this, the reader should refer
to Appendix D.3. Our hardness results in this section follow from the commonly-held conjecture
that non-uniform computation cannot solve NP-complete problems, in other words NP 6⊆ P/Poly.

Our proof strategy is as follows. In Section 3.1 we define a “perfect valuation profile” on k players
as a set of valuations where exactly one player is interested in each item. We then show that any
range of allocations that gives a good approximation on a randomly drawn perfect valuation profile
must “shatter” a constant fraction of the items, meaning that the range contains all allocations
of that subset of the items to q of the players, where the value of q depends on the quality of the
approximation. (A better approximation implies a larger q.)

In Section 3.2, we prove Theorem 3.2 by induction on the number of players k. Roughly
speaking, we show that for any MIWR mechanism A for k players, the allocations with weight
much larger than 1/k + ǫ are useless. Namely, the inductive hypothesis implies that the allocations
with weight sufficiently larger than 1/k + ǫ cannot yield a good approximation to a randomly
drawn perfect valuation; otherwise, one could use the resulting shattered set of items to design a
strictly better MIWR mechanism for k′ players for some k′ < k. This allows us to conclude that
all “useful” allocations have very similar weight to one another; within 1− η for arbitrarily small η
and a sufficiently large set of items. Since the mechanism maximizes over a large set of allocations
that are almost “pure”, in the sense that the weights are almost identical, this yields a PTAS,
contradicting the APX hardness of the problem.

Finally, we complete the proof of Theorem 3.1 in Section 3.3, using a de-randomization argu-
ment. This step is similar to Adleman’s proof that BPP ⊆ P/Poly.

3.1 Perfect Valuations

We define a perfect valuation profile as one where each item is desired by exactly one player.
Perfect valuation profiles will prove useful in our proof, due to the fact that no “small” range can
well-approximate social welfare for a randomly-drawn perfect valuation profile.
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Definition 3.3. Let N and M be a set of players and items, respectively. Let vi : 2M → R
+ be the

valuation of player i ∈ N . We say the valuation profile {vi}i∈N is a perfect valuation profile on N
and M if there exists a total allocation S of M to N such that vi(j) = 1 if j ∈ Si, and vi(j) = 0
otherwise. In this case, we say that {vi}i∈N is the perfect valuation profile generated by S.

To use perfect valuations in our proof, they must be allowable valuations. Indeed, it follows
immediately from definition 2.1 that any regular class of valuations contains all perfect valuations.

The key property of perfect valuations is a reinterpretation of Lemma 1.3, and can be sum-
marized as follows. If a range R of allocations achieves a “good” approximation for many perfect
valuations, then R must include all allocations of a constant fraction of the items to some set of q
players. Here, the number of players q depends on the quality of the approximation guaranteed by
R, with a better approximation yielding a larger q. The precise dependence of q on the quality of
the approximation, as stated in Lemma 1.3, will prove key in Section 3.2.

3.2 Hardness for Non-Uniform MIWR Mechanisms

In this section, we prove Theorem 3.2, assuming NP 6⊆ P/Poly. We fix the valuation class C as
in the statement of the theorem. Moreover, we fix η > 0 such that the 2-player social welfare
maximization problem is APX-hard to approximate within 1− η. The proof proceeds by induction
on k. We need the following strong inductive hypothesis:

IH(k). For any constant α > 1/k and set T ⊆ N, if a non-uniform polynomial-time MIWR
algorithm for the k-player problem achieves an α-approximation for m items whenever m ∈ T ,
then T is PCD.

In other words, the set of input lengths for which any particular such algorithm may achieve an
α-approximation is PCD. (See Section 2.4 for the definition of PCD.) It is clear that establishing
IH(k) for all k ≥ 1 proves Theorem 3.2, since N is not PCD. The base case of k = 1 is trivial. We
now fix k, and assume IH(q) for all q < k.

Assume for a contradiction that IH(k) is violated for some α. Let α > 1/k be the supremum

over all values of α violating it. Note that IH(k − 1) implies that α ∈
(

1
k , 1

k−1

]

. To simplify

the exposition, we assume the supremum is attained, and fix the algorithm A (and corresponding
family of polynomial advice strings) achieving an α-approximation for all m ∈ F where F is not
PCD. Our arguments can all be easily modified to hold when the supremum is not attained, by
instantiating A to achieve (α − ζ) instead, where ζ > 0 is as small as needed for the forthcoming
proof. The proof then proceeds as follows. Letting Dm denote the range of A when the number
of items is m, we partition Dm into k sets Dm

q (2 ≤ q ≤ k + 1) according to the weight of the
allocation. We also assign every m ∈ F to one or more subsets Tq (2 ≤ q ≤ k + 1); the definition of
Tq is quite technical, but roughly speaking m ∈ Tq if the output of A, when applied to a random

perfect valuation profile, has probability at least 1/k of being in Dm
q . As we said, F =

⋃k+1
q=2 Tq.

However, we will prove that Tq is PCD for all q, hence by Lemma 2.7 their union F is PCD. This
contradicts our earlier assumption that F is not PCD and completes the proof.

To prove that Tq is PCD, we distinguish three cases depending on the value of q. If 2 ≤ q ≤ k−1,
then we prove that m ∈ Tq implies that there is a non-uniform polynomial-time MIWR mechanism
for the q-player problem that achieves an approximation ratio strictly better than 1/q when the
number of items is ⌈σm⌉, for some constant σ > 0. By our induction hypothesis, the set of all
such ⌈σm⌉ is a PCD set. If q = k, then we proceed similarly but working with the k-player
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problem and proving an approximation ratio strictly better than α when the number of items is
⌈σm⌉; once again this implies that the set of all such ⌈σm⌉ is a PCD set, by our hypothesis on α.
Finally, if q = k+1 then we prove that there is a non-uniform polynomial-time algorithm achieving
approximation ratio 1 − η for the two-player social welfare maximization problem, where η was
chosen so that the problem APX hard to approximate within 1 − η. By Lemma 2.9, this implies
Tq is PCD.

Defining the partition of the range. Recall that an MIWR mechanism fixes a range of
weighted allocations for each m. Let Dm denote the range of A when the number of items is
m. Let Rm = {S ∈ X ([m], [k]) : (w,S) ∈ Dm for some w} be the corresponding set of pure allo-
cations. For each allocation S ∈ Rm, we use w(S) to denote the weight of S in Dm. We assume
without loss of generality that there is a unique choice of w(S), since allocations with greater weight
are always preferred. When m ∈ F, we may assume without loss of generality that w(S) ≥ α for
every S ∈ Rm, since A achieves an α approximation for m. We fix ǫ > 0 such that α > 1/k + ǫ,
and ξ > 0 such that 1/k + ǫ/2 = (1− ξ)−1 · (1/k),, and let δ = ǫη/5k. We partition Rm into weight
classes as follows:

• Rm
q = {S ∈ Rm : 1

(1−ξ2)q
≤ w(S) < 1

(1−ξ2)(q−1)
}, for 2 ≤ q ≤ k − 1.

• Rm
k = {S ∈ Rm : α

1−δ ≤ w(S) < 1
(1−ξ2)(k−1)

}
• Rm

k+1 = {S ∈ Rm : α ≤ w(S) < α
1−δ}

We partition Dm similarly: Dm
q = {(w(S), S) : S ∈ Rq} for 2 ≤ q ≤ k + 1.

Consider now the set Vm of perfect valuation profiles on [k] and [m′] = {1, . . . ,m/2}, extended
to [m] by zero-extension. For a given v ∈ Vm and 2 ≤ q ≤ k, let us say that v ∈ Vm

q if the set
Rm

q contains an allocation S that achieves at least a (1 + ξ)(q − 1)/k approximation to the social
welfare maximizer. Finally, let us say that v ∈ Vm

k+1 if v does not belong to Vm
q for any q < k + 1.

Notice that if v 6∈ Vm
q then the best approximation ratio achievable using an allocation in Dm

q is at
most

(1 + ξ)(q − 1)

k
· 1

(1 − ξ2)(q − 1)
=

1

(1 − ξ)k
=

1

k
+

ǫ

2
< α. (1)

However, by our assumption that A achieves an α-approximation for all valuation profiles with
m ∈ F, the range Dm must contain an α-approximation to the social welfare maximizer. If m ∈ F

and v ∈ Vm
k+1, therefore, it follows that Dm

k+1 must contain an α-approximation to the social welfare
maximizer.

By the pigeonhole principle, at least one q satisfies

|Vm
q | ≥ 1

k
· km′

. (2)

Let Tq denote the set of all m ∈ F such that (2) holds. By the preceding discussion, we have
F = ∪k+1

q=2Tq. We now proceed to prove that Tq is a PCD set for all q, completing the proof.

Cases 1 and 2: Large weight classes (q ≤ k). To each allocation S of m items to k players,
we may associate a function fS : [m′] → [k] ∪ {∗}, that maps each item x ∈ [m′] to the player who
receives that item in S, or ∗ if the item is unallocated. Similarly, to each perfect valuation profile
v on [k] and [m′] we may associate a function fv : [m′] → [k] that maps each item to the unique
player who assigns a nonzero valuation to that item. Note that S achieves a c-approximation to the

9



social-welfare-maximizing allocation for v if and only if the functions fS and fv differ on (1− c)m′

or fewer elements of [m′].
Assume now that q ≤ k. If m ∈ Tq then at least 1/k fraction of all perfect valuation profiles in

Vm
q have an allocation S ∈ Rm

q that achieves a (1 + ξ)(q − 1)/k-approximation to the maximum
social welfare. Thus, for at least 1/k fraction of all perfect valuation profiles v ∈ Vm

q , there is

some S ∈ Rm
q such that the fS and fv differ on

(

1 − q−1
k − (q−1)ξ

k

)

m′ elements of [m′]. Applying

Lemma 1.3, there is a set W of at least ⌈σm⌉ elements of [m′], and a set N ′ of q players in [k],
such that all allocations of W to N ′ occur as restrictions of allocations in Rm

q . We refer to W as a
“shattered” subset of [m′].

When q < k (Case 1 of our argument) we may now construct, via a non-uniform polynomial-
time reduction, an MIWR allocation rule for the q-player problem that achieves a [(1 − ξ2)q]−1

approximation for ⌈σm⌉ items when m ∈ Tq. Using W and N ′ – as defined above – as advice,
embed the instance into an input for A by using players N ′ and items W in the obvious way: Give
player in [k] \ N ′ an all-zero valuation. Moreover, extend the valuation of a player i ∈ N ′ to the
entire set of items [m]. Now, run A on the embedded instance. Notice that every allocation of W
to N ′ appears as the restriction of some allocation in Rm

q , and is therefore in the range of A with
weight at least [(1 − ξ2)q]−1. Thus, A must output a weighted allocation with expected welfare
at least [(1 − ξ2)q]−1 of the optimal. The result is a non-uniform poly-time MIWR mechanism for
q players with approximation ratio bounded away from 1/q for all integers m̂ = ⌈σm⌉ such that
m ∈ Tq. By our induction hypothesis, this implies that the sum of all such m̂ is a PCD set. The
fact that Tq itself is a PCD set now follows as an easy application of the definition of PCD.

When q = k (Case 2 of our argument) using the same embedding yields an algorithm for k
players that achieves an α/(1 − δ) approximation for all m̂ = ⌈σm⌉ such that m ∈ Tq. By our
definition of α, this implies that the set of all such m̂ is a PCD set, which again implies that Tq is
a PCD set.

Case 3: The smallest weight class (q = k + 1). The remaining case is q = k + 1. When
m ∈ Tk+1, by our definition of Vm

k+1, at least 1/k fraction of all (extended) perfect valuation profiles
v ∈ Vm have a weighted allocation (w(S), S) ∈ Dm

k+1 that is an α-approximation to the social
welfare maximizing allocation for v. Since α ≤ w(S) < α/(1 − δ), the pure allocation S must be a
(1 − δ)-approximation to the social welfare maximizer. On the other hand, our assumption is that
maximizing social welfare is APX-hard, even for two players; to be specific, recall that η > 0 was
chosen such that it is NP-hard to approximate the maximum social welfare with approximation
factor 1−η. We now complete the proof by exhibiting a randomized, non-uniform polynomial time
algorithm that achieves a (1 − η)-approximation for the k-player problem with m/2 items, for all
m ∈ Tk+1. Notice that the de-randomization argument of Adleman [1] for proving BPP ⊆ P/Poly

can be used to de-randomize this to a non-uniform deterministic (1 − η)-approximation for the k-
player problem with m/2 items, for all m ∈ Tk+1. The reader unfamiliar with Adleman’s argument
may refer to Section 3.3, where we use the argument to establish Theorem 3.1.

Recall that δ = ǫη/5k. We will now use A to get a (1− η)-approximate solution for an instance
with k players and m′ = m/2 items for all m ∈ Tk+1 . We embed the instance on k players and m′

items into A in the following way. We use M1 = [m]\ [m′] and let vi : 2M1 → R denote the resulting
valuation of player i. We assume without loss of generality that maxi vi(M1) = 1. Next, we modify
each player’s valuation function by “mixing in” a perfect valuation profile on the remaining set
of items M2 = [m′]. We draw a perfect valuation profile (v′1, . . . , v

′
k) on N and M2 uniformly at
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random. Now, we “mix” the original valuations v with v′, in proportions 1 and γ = 4k
ǫm′ , to yield

the following hybrid valuation profile v∗ : 2M → R
+.

v∗i = vi ⊕ γv′i

We abuse notation and use vi [v′i] to refer also to the zero-extension of vi [v′i] to M . Let OPT =
maxS∈X v(S). Similarly, let OPT ′ = maxS∈X v′(S) and let OPT ∗ = maxS∈X v∗(S). Notice that
1 ≤ OPT ≤ k, and that OPT ′ = m′, by construction. Since v and v′ are defined on a disjoint set
of items, it is easy to see that OPT ∗ = OPT + γOPT ′. The scalar γ was carefully chosen so that
the following facts hold:

1. The random valuation profile v′ accounts for a majority share of v∗ in any optimal solution.
Specifically, γOPT ′ ≥ 4

ǫ OPT . This implies that an approximation to the optimal welfare
using v∗ gives a similar approximation to the optimal welfare using v′. To be more precise,
it can be shown by a simple calcluation that:

Claim 3.4. For any S ∈ X and any β ≥ 0, if v∗(S) ≥ βOPT ∗ then v′(S) ≥ (β − ǫ/2)OPT ′.

2. The original valuation profile v accounts for a constant-factor share of v∗ in any optimal
solution. Specifially OPT ≥ ǫ

4k (γOPT ′). This implies that a (1 − δ)-approximation to the
optimal welfare using v∗ gives a (1−O(δ))-approximation to the optimal welfare using v. To
be more precise, it can be shown by a simple calculation that:

Claim 3.5. For any S ∈ X , if v∗(S) ≥ (1−δ)OPT ∗ then v(S) ≥ (1− 5k
ǫ δ)OPT = (1−η)OPT .

We are now ready to show that running A on the valuations v∗ will yield, with constant proba-
bility, an allocation that is a (1−η)-approximation to the optimal welfare for the original valuations
v, when m ∈ Tk+1. Let (w(S), S) be the weighted allocation output by A; note that S is a random
variable over draws of v′. Since A is an α approximation algorithm, the welfare w(S)v∗(S) is at least

αOPT ∗ ≥ (1/k+ǫ)OPT ∗ with probability 1. This implies that v∗(S) ≥
(

1
w(S)·k + ǫ

w(S)

)

OPT ∗. By

Claim 3.4, we see that v′(S) is not too far behind: v′(S) ≥
(

1
w(S)·k + ǫ

w(S) − ǫ
2

)

OPT ′. Moreover,

this gives:

w(S)v′(S) ≥
(

1

k
+

ǫ

2

)

OPT ′ (3)

Recall from equation (1) that if v′ ∈ Vm
k+1 then for 2 ≤ q ≤ k, there is no S ∈ Rm

q that satisfies (3),
hence any such S satisfying (3) must belong to Dm

k+1. Also, by our assumption that m ∈ Tk+1, the
probability that v′ ∈ V m

k+1 is at least 1/k.
We have thus established that running A on the random input v∗ yields, with probability at least

1/k, an outcome (w(S), S) in Dm
k+1. Using the fact that w ≤ α/(1 − δ) and w(S)v∗(S) ≥ αOPT ,

we conclude that S is (1 − δ)-approximate for v∗ also with probability 1/k:

v∗(S) ≥ (1 − δ)OPT ∗

Invoking Claim 3.5, we conclude that v(S) ≥ (1 − η)OPT with constant probability over draws
of v′. Since w(S) is at least 1/k, S is output by A with constant probability. This completes the
proof.
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3.3 Main Result

In this section, we complete the proof of Theorem 3.1. First, we make the observation that running
a randomized MIWR algorithm multiple times independently and returning the best allocation
output by any of the runs results in another randomized MIWR algorithm.

Lemma 3.6. Fix a randomized MIWR algorithm A and a positive integer r. Let Ar be the algorithm
that runs r independent executions of A on its input, and of the r allocations returned, outputs the
one with greatest welfare. Ar is also randomized MIWR.

Proof. Condition on D1, . . . ,Dr, the ranges of A on the r independent executions. A maximizes
expected welfare over Di on execution i. Therefore Ar maximizes over D1 ∪ · · · ∪ Dr.

Now, we derive Theorem 3.1 from Theorem 3.2, using a de-randomization argument similar to
that of Adleman [1]. Assume for a contradiction that A is a randomized MIWR algorithm that
runs in polynomial time and achieves an expected approximation ratio 1/k+ǫ for each input m and
v1, . . . , vk. Let n denote the number of bits in the input, and let ℓ(n) be a polynomial bounding
the length of the random string drawn by A. We will describe a polynomial-time with polynomial-
advice MIWR algorithm that achieves an approximation ratio of 1/k + ǫ/2, which contradicts
Theorem 3.2.

Let r(n) = 2n/ǫ2 and let A′ = Ar(n). By Lemma 3.6, A′ is randomized MIWR, runs in
polynomial time, and draws at most ℓ(n)r(n) random bits. Let Xi be the fraction of the optimal
social welfare achieved by the allocation output on the i’th run of A. The random variables
X1, . . . ,Xr(n) are independent, 0 ≤ Xi ≤ 1, and E[Xi] ≥ 1/k + ǫ. For each input of length n, the
probability that none of the r(n) runs of A return an allocation with welfare better than 1/k + ǫ/2
of the optimal can be upper-bounded using Hoeffding’s inequality:

Pr

[

max
i

Xi ≤
(

1

k
+

ǫ

2

)]

≤ Pr

[

E

(

∑

i

Xi

)

−
∑

i

Xi ≥
ǫr(n)

2

]

≤ e−ǫ2r(n)/2 = e−n.

The number of different inputs of length n is 2n. Thus, using the union bound and the above
inequality, the probability that A outputs a (1/k + ǫ/2)-approximate allocation on all inputs of
length n is non-zero. Therefore, for each n there is choice of at most ℓ(n)r(n) random bits such
that A′ achieves a 1/k + ǫ/2 approximation for all inputs. Using this as the advice string, this
contradicts Theorem 3.2. This completes the proof of Theorem 3.1.

4 Hardness Result for Budgeted Additive Valuations

In this section, we prove the following theorem:

Theorem 4.1. There is no polynomial time randomized MIR mechanism that achieves 1
k + ǫ

approximation of the optimal social welfare for k bidders with budgeted additive valuations, unless
NP ⊆ P/Poly.

Notice that this theorem implies that all universally truthful randomized MIR mechanisms
cannot achieve 1

k + ǫ approximation for k bidders. In the proof we will use the term k-partition
interchangeably with an allocation for k bidders. As in the previous section, an allocation does not
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necessarily allocate all items. A partition corresponding to a total allocation will be called covering.
Perfect valuations generated by total allocations will also be used in the proof. We first study the
abundance of “orthogonal” partitions of M = [m]. The following definition formalizes this notion.

Definition 4.2. Let T be a set of k-partitions of M : T = {(T i
1, T

i
2, · · · T i

k) | i ∈ [ℓ]}, we say these
partitions are ǫ-apart for ǫ > 0, if,

∀(I1, I2, · · · , Iℓ) ∈ [k]ℓ,

∣

∣

∣

∣

∣

ℓ
⋂

i=1

T i
Ii

∣

∣

∣

∣

∣

≤
(

1

k

)ℓ

(1 + ǫ)|M |.

Lemma 4.3. For every pair of integers k and ℓ, and every ǫ satisfying 0 < ǫ < 1, there exists
α > 0 such that there exists a set F of covering k-partitions of M , where |F | = eαm, and every ℓ
elements of F are ǫ-apart.

The proof of Lemma 4.3 is relegated to the appendix. The next lemma shows that for valuations
generated by partitions that are apart, good welfare approximations require distinct allocations.

Lemma 4.4. Given ℓ covering k-partitions that are ǫ-apart, consider the ℓ tuples of valuations
generated by them. The sum of social welfare achievable by a single allocation on these tuples of

valuations is at most

(

1
k +

√

kπ
ℓ + k2−ℓ/k

ℓ·ln 2

)

(1 + ǫ) of the optimal.

Proof. The sum of optimal social welfare for ℓ generated valuations is easily seen to be ℓm. Let
T = {(T i

1, T
i
2, . . . , T

i
k) | i ∈ [ℓ]} be the set of covering k-partitions that generate the valuations.

Let S be the sum of social welfare achieved by one single allocation R, then S is maximized when
R(x) ∈ argmax

i∈[k]

∑ℓ
j=1 vj

i (x) holds for every item x ∈ M . For I ∈ [k]ℓ, define Qi(I) to be the

number of times that i occurs in I, i.e., |{j ∈ [ℓ] | Ij = i}|, and define the plenty of I to be
P (I) = maxi∈[k] Qi(I). Then we have

S ≤
∑

I∈[k]ℓ

P (I) · |T 1
I1 ∩ T 2

I2 ∩ · · · ∩ T ℓ
Iℓ
| ≤

∑

I∈[k]ℓ P (I)

kℓ
(1 + ǫ)m. (4)

The second inequality results from the ǫ-apartness of the partitions.

We recognize that

P

I∈[k]ℓ
P (I)

kℓ can be seen as the expectation of a properly defined random

variable — if I ′ is a random variable uniformly distributed on [k]ℓ, then this factor is exactly the
expectation of P (I ′). The problem boils down to bounding E[P (I ′)]. Note that E[Qi(I

′)] = ℓ/k.
Let Y (I) = P (I) − ℓ

k , then by the union bound

Pr[Y (I ′) > δ · ℓ

k
] ≤ k · Pr[Qi(I

′) > (1 + δ)
ℓ

k
].

Applying Chernoff bound (Theorem B.1), we get

E[Y (I ′)] =

∫ ∞

0
PrI′ [Y (I ′) > δ] dδ =

ℓ

k

∫ ∞

0
PrI′ [Y (I ′) >

(

δ · k

ℓ

)

ℓ

k
] d

(

δ · k

ℓ

)

≤ ℓ

{
∫ 2e−1

0
PrI′ [Qi(I

′) > (1 + δ)
ℓ

k
] dδ +

∫ ∞

2e−1
PrI′ [Qi(I

′) > (1 + δ)
ℓ

k
]dδ

}

< ℓ

(
∫ ∞

0
e−δ2ℓ/4k dδ +

∫ ∞

1
2−δℓ/k dδ

)

=
√

kπℓ +
k2−ℓ/k

ln 2
.
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Consequently we also obtain that E[P (I ′)] ≤ ℓ
k +

√
kπℓ + k2−ℓ/k

ln 2 . Substituting this into (4), then
dividing it by ℓm, the sum of optimal social welfare, we get what the lemma claims.

To finish the proof, we need the next lemma that connects to the “shattering” lemma.

Definition 4.5. Two k-partitions (T1, T2, · · · , Tk) and (T ′
1, T

′
2, · · · , T ′

k) are said to be ǫ-far if
∑

i6=j |Ti∩
T ′

j | ≥ ǫm. If two partitions are not ǫ-far, we say that they are ǫ-close.

Lemma 4.6. If an MIR mechanism achieves at least 1
k +

√

kπ
ℓ + ke−ℓ/k

ℓ·ln 2 + ǫ′ approximation to the

optimal social welfare for k bidders, where k, ℓ and ǫ′ are all fixed, and ℓ ≥ 10k, then there is a
δ > 0, such that there is a subset S of items, with |S| ≥ δm, and two bidders i and j, and every
allocation of items in S to i and j is a restriction of an allocation in the range of the mechanism.

Proof. Let ǫ be ǫ′/3, and by Lemma 4.3 there is a set F of ǫ-apart k-partitions, and |F | = eα|U |

for some α > 0. Let R be the multi-set of allocations output by the mechanism on the tuples of
valuations generated by the partitions in F . Note that |R| = |F |. We claim that in R, there can be
no ℓ partitions such that every two of them are ǫ

ℓ2 -close. For a contradiction, suppose that this is
the case. Let {(T i

1, T
i
2, · · · , T i

k) | i ∈ [ℓ]} be these allocations, define D to be
⋃

1≤s<t≤ℓ

⋃

i6=j(T
s
i ∩T t

j ),
then because of the pairwise ǫ

ℓ2 -closeness of the partitions, |D| ≤ ǫm. For each item not in D, the
ℓ allocations either allocate it in the same way, or some allocate it in the same way and others
do not allocate it to any bidder. By Lemma 4.4, on M\D the allocations can achieve at most
1
k +

√

kπ
ℓ + k2−ℓ/k

ℓ·ln 2 + ǫ of the sum of optimal welfare. Each item in D can contribute at most ℓ to the

sum of welfare, and in total they count at most ǫ fraction of the optimal, which is ℓm. Thus the

mechanism can achieve at most 1
k +

√

kπ
ℓ + k2−ℓ/k

ℓ·ln 2 + 2ǫ′

3 of the optimal social welfare, contradicting

the assumption on its performance. Thus, there are no ℓ-allocations in R that are pairwise ǫ
ℓ2

-far.
Applying Lemma 1.4 to R, we finish the proof.

Proof of Theorem 4.1:: Whenever we have the range of a mechanism containing all allocations of
items in a linearly smaller subset to two bidders, we can use the mechanism with polynomial advice
to optimize the social welfare of an auction with fewer items. Therefore, the condition of Lemma 4.6
should not be satisfied for any ℓ unless NP ⊆ P/Poly. Let ℓ in Lemma 4.6 get arbitrarily big. We
see that, unless NP ⊆ P/Poly, any efficient MIR mechanism cannot achieve 1/k + ǫ approximation
to the optimal social welfare for k bidders. Then by the same argument as in Section 3.3 (proof
omitted here), we can extend this to randomized MIR mechanisms and get Theorem 4.1.

�

Acknowledgements

We thank the authors of [5] and [13] — Elchanan Mossel, Christos Papadimitriou, Michael Schapira,
Yaron Singer, Dave Buchfuhrer, and Chris Umans — for stimulating discussions on these topics
and for their influence on this work.

14



References

[1] Leonard Adleman. Two theorems on random polynomial time. In SFCS ’78: Proceedings of
the 19th Annual Symposium on Foundations of Computer Science, pages 75–83, Washington,
DC, USA, 1978. IEEE Computer Society.

[2] Nir Andelman and Yishay Mansour. Auctions with budget constraints. In SWAT, pages 26–38,
2004.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 1 edition, April 2009.

[4] Liad Blumrosen and Noam Nisan. 2007. Combinatorial Auctions (a survey). In “Algorithmic
Game Theory”, N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, editors.

[5] Dave Buchfuhrer and Chris Umans. Limits on the social welfare of maximal-in-range auction
mechanisms. working paper.

[6] E. H. Clarke. Multipart pricing of public goods. Public Choice, pages 17–33, 1971.

[7] Shahar Dobzinski and Shaddin Dughmi. On the power of randomization in algorithmic mech-
anism design. In FOCS’09. to appear.

[8] Shahar Dobzinski and Noam Nisan. Limitations of VCG-based mechanisms. Preliminary
version in STOC’07.

[9] Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit auctions. In EC’07.

[10] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mechanisms for
combinatorial auctions. In STOC’06.

[11] T. Groves. Incentives in teams. Econometrica, pages 617–631, 1973.

[12] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear
programming. In FOCS 2005.

[13] Elchanan Mossel, Christos Papadimitriou, Michael Schapira, and Yaron Singer. VC v. VCG:
Inapproximability of combinatorial auctions via generalizations of the VC dimension. Working
Paper.

[14] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Be-
haviour, 35:166 – 196, 2001. A preliminary version appeared in STOC 1999.

[15] Noam Nisan and Amir Ronen. Computationally feasible VCG-based mechanisms. Journal of
Artificial Intelligence Research, 29:19–47, 2007. A preliminary version appeared in EC 2000.

[16] Christos Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truth-
ful. In FOCS, 2008.

[17] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of Finance,
pages 8–37, 1961.

15



A Shattering Results

We first formally define the notion of “shattering” in a more general setting.

Definition A.1. For any sets U, V we interpret the notation V U to mean the set of functions
from U to V . If R ⊆ V U , S ⊆ U, L ⊆ V , we say that S is (L, q)-shattered by R, for an integer q,
2 ≤ q ≤ |L|, if there exist q functions c1, c2, . . . , cq : S → L that satisfy:

1. ∀x ∈ S ∀i 6= j ci(x) 6= cj(x)

2. ∀h ∈ [q]S ∃f ∈ R ∀x ∈ S f(x) = ch(x)(x)

Intuitively, we associate with each element in S a range in L of size exactly q, and we say that
S is (L, q)-shattered by R if every function that maps each element in S to its associated range
is a restriction of an element in R. In the context of combinatorial auctions, we see U as the set
of items, and V as the set of bidders, plus a dummy bidder representing not allocating the item.
Then set of functions V U is the set of all possible allocations.

The following observation bridges this notion of shattering to its application to the combinatorial
auctions in the paper.

Observation A.2. If a subset S of size δm is (L, q)-shattered by R ⊆ V U , then there exists a
subset L′ ⊆ L and S′ ⊆ S, such that |L′| = q, |S′| ≥ |S|/

(|L|
q

)

and S′ is (L′, q)-shattered by R.

The observation is easily seen by the pigeonhole principle. Note that by the definition of (L, q)-
shattering, if |L′| = q, then we have that every function from S′ to L′ is a restriction of an element
in R. In the context of combinatorial auctions, this means that all possible allocations of items in S′

to the q bidders in L′ are in the range R under restriction. It is this form of “strong” shattering
that is in use in the main body of the paper. In the following lemmas, we will show the existence
of large (L, q)-shattered sets, being aware that an application of the above observation implies a
subset being “strongly” shattered, of size only a constant factor smaller.

Lemma A.3. For every integer n ≥ 2, q, 2 ≤ q ≤ n, and every ǫ > 0, there is a δ > 0 such
that the following holds. For every pair of finite sets M,N with |N | = n and every set R of more
than (q − 1 + ǫ)|M | elements of NM there is a set S of at least δ|M | elements of M such that S is
(V, q)-shattered by R.

Proof. Let Fq(m,n, d) denote the maximum cardinality of a set R ⊆ AB such that |A| = n, |B| = m,
and R does not (A, q)-shatter any (d + 1)-element subset of B.

Fix an element b ∈ B. For each element f ∈ R, let f−b denote the restriction of f to the
set B\{b}. Take the set of all functions g : B\{b} → A and partition it into sets Q0, Q1, · · · , Q(n

q)
as follows. First, given an ordered pair (g, a) consisting of a function g from B\{b} to A and an
element a ∈ A, let g ∗ a denote the unique function f from B to A that maps b to a and restricts
to g on B\{b}. Now define S(g) to be the set of all a ∈ A such that g ∗ a is in R. Number all the
q-element subsets of A from 1 to

(n
q

)

, call them P1, P2, · · · , P(n
q)

, and let Qi (1 ≤ i ≤
(n

q

)

) consist

of all g such that S(g) has at least q elements, and the q smallest elements of S(g) constitute Pi.
Finally let Q0 consist of all g such that S(g) has fewer than q elements.

By our assumption that R does not (A, q)-shatter any set of size greater than d, we have the
following facts:
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1. Q0 does not (A, q)-shatter any (d + 1)-element subset of B \ {b}. Consequently,

|Q0| ≤ F (m − 1, n, d).

2. For all i ≤
(n

q

)

, Qi does not (A, q)-shatter any d-element subset of B \ {b}. Consequently,

|Qi| ≤ Fq(m − 1, n, d − 1).

Let Ri denote the set of all f ∈ R such that f−b is in Qi, for 0 ≤ i ≤
(n

q

)

, then by definition of
Qi, we have |R0| ≤ (q − 1)|Q0|, and |Ri| ≤ n|Qi| for i ≤ 1. Since Ri’s are disjoint, we have

|R| =

(n
q)
∑

i=0

|Ri| ≤ (q − 1)|Q0| +
(n

q)
∑

i=1

n|Qi|,

Fq(m,n, d) ≤ (q − 1)Fq(m − 1, n, d) + n

(

n

q

)

Fq(m − 1, n, d − 1) (5)

The recurrence (5), together with the initial condition Fq(m,n, 0) = (q−1)m for all m,n, implies
the upper bound

Fq(m,n, d) ≤
d
∑

i=0

ni

(

n

q

)i(m

i

)

(q − 1)m

Thus, if Fq(m,n, d) > (q − 1 + ǫ)m then, by using Stirling’s approximation, we see that d > δm for
some δ depending only on ǫ and n.

In Section 3 of the paper, we made use of the fact that a range of allocations shatters a large
subset if they generate good social welfare for many perfect valuations. The condition is captured
by the following definition:

Definition A.4. For two functions f, g ∈ NM , their normalized Hamming distance Ham(f, g) is
equal to 1

|M | times the number of distinct x ∈ M such that f(x) 6= g(x). If f ∈ NM and R ⊆ NM ,

the Hamming distance Ham(f,R) is the minimum of Ham(f, g) for all g ∈ R.

As each perfect valuation can be seen as a function f in NM , and each allocation can be viewed
as a g ∈ NM , Ham(f, g) is how much social welfare is lost by g on the perfect valuation f . In
the same way, R can be viewed as a range of allocations, and Ham(f,R) is the minimum social
welfare lost by any of the allocation in R on valuation f . If Ham(f,R) is small for a large fraction
of f ∈ NM , it means the range achieves a good approximation of social welfare for a significant
portion of the perfect valuations.

We also note that since N can represent the set of bidders plus a dummy bidder representing not
allocating an item, NM can express all allocations including those not allocating all items. On the
other hand, if we restrict the functions so that they can take values only in a subset L representing
the real bidders, then they represent allocations that do not discard items. This explains the role
played by the set L in the next lemma.

Lemma A.5. For every positive real number ǫ > 0, integers n ≥ 2, q, 2 ≤ q ≤ n, and polynomial
γ(n), there is a δ > 0 such that the following holds. For all finite sets M,N and all subsets L ⊆ N
with |L| = n, if R ⊆ NM and at least γn|U | points f ∈ LU satisfy Ham(f,R) < 1 − (q − 1)/n − ǫ,
then there is a set S ⊆ M such that |S| > δ|M | and S is (L, q)-shattered by R.
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Proof. Let m = |M |, r = 1 − (q − 1)/n − ǫ. Let A be the set of all points f ∈ LM such that
Ham(f,R) < r. Let G be a function from A to R such that Ham(f,G(f)) < r for all f ∈ A.
Let I(f) denote the set of all x ∈ M such that f(x) = G(f)(x). Note that our assumption
that Ham(f,G(f)) < r implies that |I(f)| ≥ ( q−1

n + ǫ)m. The number of pairs (f, J) such that

f ∈ A, |J | = ǫm/2, J ⊆ I(f) is bounded below by γnm ·
((1/n+ǫ)m

ǫm/2

)

. By the pigeonhole principle,

there is at least one set J of ǫm/2 elements such that the number of f ∈ LU satisfying J ⊆ I(f) is
at least

γnm ·
(

( q−1
n + ǫ)m

ǫm/2

)

/

(

m

ǫm/2

)

= γnm (( q−1
n + ǫ)m)! ((1 − ǫ/2)m)!

(( q−1
n + ǫ/2)m)! m!

> γnm · ( q−1
n + ǫ)m

m
· ( q−1

n + ǫ)m − 1

m − 1
· · · ( q−1

n + ǫ/2)m

(1 − ǫ/2)m

> γnm

(

q−1
n + ǫ/2

1 − ǫ/2

)ǫm/2

.

Fix such a set J . For every f ∈ LM satisfying J ⊆ I(f), the restriction of f to J is an element
g ∈ LJ ; note that g is also the restriction of G(f) to J . For any single g ∈ LJ , the number of
f ∈ LM that restrict to g is bounded above by nm−ǫm/2. Applying the pigeonhole principle again,
we see that the number of distinct g ∈ LJ that occur as the restriction of some f ∈ A satisfying
J ⊆ I(f) must be at least

γnm

(

q−1
n + ǫ/2

1 − ǫ/2

)ǫm/2/

nm−ǫm/2 = γ

(

q − 1 + ǫn/2

1 − ǫ/2

)ǫm/2

.

We now have the following situation. There is a set J of ǫm/2 elements, and at least γ·(q−1+ǫn/2)|J |

elements of LJ occur as the restriction of an element of R to J . It follows from Lemma A.3 that J
has a subset of S of at least δm elements such that S is (L, q)-shattered by R.

Proof of Lemma 1.3: Combining Lemma A.3, Lemma A.5 and Observation A.2, we immediately
get Lemma 1.3. �

Now we are ready to show the next shattering lemma. The k-partitions represent allocations
to k-bidders, allowed to discard items. In the proof we occasionally see them as partial functions,
in a way very similar to that in the previous lemmas.

To state the lemma succinctly, we denote by t(k, ℓ, ǫ,m, r) the smallest number of subsets that
are ([k], 2)-shattered by any set T of k-partitions of a set M , where |M | = m, |T | = r, and every ℓ
partitions from T are not pairwise ǫ-close (see Definition 4.5).

Lemma A.6. For every integers k ≥ 2, ℓ and m, every ǫ > 0, there exists an α > 0 such that
t(k, ℓ, ǫ,m, r) ≥ rα for every r.

Note that if r is 2βm for some β > 0, the conclusion implies the existence of a subset of size
γm that is ([k], 2)-shattered by the set of partitions, for some γ > 0. The proof also works if R is
a multi-set.
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Proof. Let T be any set of k-partitions of M , |M | = m, |T | = p, and every ℓ elements from T
are not pairwise ǫ-close. We arbitrarily group the partitions in T , so that every group consists of
ℓ partitions. Then in each group {(T i

1, T
i
2, · · · , T i

k) | i ∈ [ℓ]}, there are at least two partitions that
are ǫ-far, and the size of their “difference”

∑

i6=j |T s
i ∩ T t

j | is at least ǫm. Since we have r/ℓ such
pairs, the sum of the sizes of “differences” will be at least ǫmr

ℓ . By pigeonhole principle, there exists
an x ∈ M , and i∗, j∗ ∈ [k] (i∗ 6= j∗) such that in at least ǫr

ℓ(k
2)

pairs of partitions (T1, T2, · · · , Tk)

and (T ′
1, T

′
2, · · · , T ′

k), x occurs in (Ti∗ ∩ T ′
j∗) ∪ (T ′

i∗ ∩ Tj∗). Now if we denote by Ti∗ the set of those
partitions in T that map x to i∗, and Tj∗ those mapping x to j∗, then |Ti∗ | ≥ ǫp

ℓ(k
2)

and |Tj∗| ≥ ǫp

ℓ(k
2)

.

Let Ii∗ denote the set of subsets that are ([k], 2)-shattered by Ti∗, and similarly Ij∗ the set of
subsets ([k], 2)-shattered by Tj∗, I the set of subsets ([k], 2)-shattered by T itself. We claim that
|I| ≥ |Ii∗ |+ |Ij∗ |. To see this, it is clear that Ii∗ ∪ Ij∗ ⊆ I, and x is not in any of the set in Ii∗ ∪ Ij∗ .
Besides, for every set S in Ii∗ ∩ Ij∗, S ∪ {x} should be shattered by T according to our definition.
Therefore |I| ≥ |Ii∗ ∪ Ij∗ | + |Ii∗ ∩ Ij∗ | = |Ii∗ | + |Ij∗ |. In other words, t(k, ǫ,m, r) ≥ 2t(k, ǫ,m, ǫr

ℓ(k
2)

).

By induction the lemma is proved.

Proof of Lemma 1.4: Combining Lemma A.6 and Observation A.2, we get Lemma 1.4. �
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B Omitted Proofs from Section 4

Proof of Lemma 4.3: This is shown by a probabilistic argument. We randomly sample a number of
covering k-partitions in the following way. Each time we sample a partition, we decide for each item
in M , uniformly at random, which one of the k subsets it should be placed in. We repeat this process
n times, and get a set of k-partitions {(T i

1, T
i
2, · · · , T i

k) | i ∈ [n]}. Let A = {a1, a2, . . . , aℓ} ⊆ [n],
B = {b1, b2, · · · , bℓ} ∈ [k]ℓ, let IB

A denote the event

|T a1
b1

∩ T a2
b2

∩ · · · ∩ T aℓ
bℓ
| >

1

kℓ
(1 + ǫ)m. (6)

The expectation of the left hand side of (6) is m/kℓ. By Chernoff bound,

Pr[IB
A ] ≤ e−ǫ2m/4kℓ

, ∀A,B.

The probability that IB
A happens for some A and B is upper bounded by

∑

A⊆[n],|A|=ℓ

∑

B∈[k]ℓ

Pr[IB
A ] ≤

(

n

ℓ

)

kℓe−ǫ2m/4kℓ ≤
(

ken

ℓ

)ℓ

e−ǫ2m/4kℓ
.

Therefore as long as n < ℓ
kee

ǫ2m/4ℓkℓ
, the probability above is smaller than 1, i.e., there exist

n partitions that satisfy the lemma. This completes the proof. �

In the proof of Lemma 4.4, we used two forms of the Chernoff bound:

Theorem B.1. (Chernoff bound): Let X1,X2, · · · ,Xn be i.i.d. random variables such that Xi ∈
{0, 1} and Pr(Xi = 1) = p for every i ∈ [n]. Let X =

∑

i Xi and µ = E[X], then
(i) for δ > 2e − 1, Pr[X > (1 + δ)µ] < 2−δµ;
(ii) for 0 < δ < 2e − 1, Pr[X > (1 + δ)µ] < e−δ2µ/4.
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C Omitted Proofs from Section 2.4

Proof of Lemma 2.7: Suppose S1, . . . , Sk are CD sets, with circuit families {C(i)
n } (1 ≤ i ≤ k) such

that C(i)
n has size bounded by a polynomial qi(n) and decides 3sat correctly on all instances of size

n ∈ Si. Let q(n) be a polynomial satisfying q(n) ≥ max1≤i≤k qi(n) for all n ∈ N. We can obtain a

family of circuits {Cn} of size bounded by q(n), by defining Cn to be equal to C(i)
n if n belongs to Si

but not to S1, . . . , Si−1, and defining Cn to be arbitrary if n 6∈ S1 ∪ · · · ∪ Sk. Then Cn decides 3sat

correctly on all instances of size n ∈ S1 ∪ · · · ∪ Sk, as desired.
If S1, . . . , Sk are CD sets, p1, . . . , pk are polynomials, and for 1 ≤ i ≤ k we have a PCD set

Ti ⊆
⋃

n∈Si
[n, pi(n)], then we may take p(n) to be any polynomial satisfying p(n) ≥ max1≤i≤k pi(n)

for all n ∈ N, and we may take S to be the set S1∪· · ·∪Sk. Then we find that the set T = T1∪· · ·∪Tk

is contained in
⋃

n∈S[n, p(n)]. This implies that T is PCD, because S is CD. �

Proof of Lemma 2.9: By our assumption that L is NP-hard under polynomial-time many-one
reductions, there is such a reduction from 3sat to L. Since the running time of the reduction is
bounded by a polynomial p(n), we know that it transforms a 3sat instance of size n into an L
instance of size at most p(n). Assume without loss of generality that p(n) is an increasing function
of n.

Let S be the set of all n such that {p(n) + 1, p(n) + 2, . . . , p(n + 1)} intersects T . The set
S is complexity-defying, because for any n ∈ S we can construct a polynomial-sized circuit that
correctly decides 3sat instances of size n, as follows. First, we take the given 3sat instance and
apply the reduction from the preceding paragraph to transform it into an L instance of size at
most p(n). Then, letting m be any element of T ∩ {p(n) + 1, . . . , p(n + 1)}, we apply the padding
reduction to transform this L instance into another L instance of size m. Finally, we solve this
instance using a circuit of size poly(m) that correctly decides L on all instances of size m; such a
circuit exists by our assumption on T .

For every m ∈ T there is an n ∈ N such that p(n) < m ≤ p(n + 1), and this n belongs to S.
Thus, T ⊆ ⋃n∈S [n, p(n + 1)], and this confirms that T is PCD. �

Proof of Lemma 2.10: Suppose that

N ⊆
⋃

n∈S

[n, p(n)] (7)

for some complexity-defying set S and polynomial function p(n). We may assume without loss of
generality that p(n) is an increasing function of n and that p(n) ≥ n for all n.

Suppose that {Cn} is a polynomial-sized circuit family that correctly decides 3sat whenever
the input size is in S. We will construct a polynomial-sized circuit family that correctly decides
3sat on all inputs. The construction is as follows: given an input size m, using (7) we may find
a natural number n such that n ≤ p(m) ≤ p(n). Since p is an increasing function, we know that
n ≥ m. Given an instance of 3sat of size m, we first adjoin irrelevant clauses that don’t affect its
satisfiability — e.g. the clause (x∨x) — until the input size is increased to n. This transformation
can be done by a circuit of size poly(m), since n ≤ p(m). Then we solve the new 3sat instance
using the circuit Cn. By our assumption on S, this correctly decides the original 3sat instance of
size m. As m was arbitrary, this establishes that NP ⊆ P/poly, as desired. �
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D Additional Preliminaries

D.1 Truthfulness

A k-bidder, m-item mechanism for combinatorial auctions with valuations in C is a pair (f, p) where
f : Ck

m → X ([m], [k]) is an allocation rule, and p = (p1, · · · , pk) where pi : Ck
m → R is a payment

scheme. (f, p) might be either randomized or deterministic.
We say deterministic mechanism (f, p) is truthful if for all i, all vi, v

′
i and all v−i we have that

vi(f(vi, v−i)i)−pi(vi, v−i) ≥ v′i(f(v′i, v−i)i)−p(v′i, v−i). A randomized mechanism (f, p) is universally
truthful if it is a probability distribution over truthful deterministic mechanisms. More generally,
(f, p) is truthful in expectation if for all i, all vi, v

′
i and all v−i we have that E[vi(f(vi, v−i)i) −

p(vi, v−i)] ≥ E[v′i(f(v′i, v−i)i)−pi(v
′
i, v−i)], where the expectation is taken over the internal random

coins of the algorithm.

D.2 Algorithms and Approximation

Fix a valuation class C. An algorithm A for combinatorial auctions with C valuations takes as input
the number of players k, the number of items m, and a player valuation profile v1, . . . , vk where
vi ∈ Cm. A must then output an allocation of [m] to [k]. For each k and m, A induces an allocation
rule of m items to k bidders. Our approximation bounds are all in terms of the number of players.
Therefore, in our proofs we consider combinatorial auctions with a fixed number of bidders k.

We say an algorithm A for k-player combinatorial auctions achieves an α-approximation if, for
every input m and v1, . . . , vk:

E[v(A(m, v1, . . . , vk))] ≥ α max
S∈X ([m],[k])

v(S)

Moreover, we sayA achieves an α-approximation for m items if the above holds whenever the
number of items is fixed at m.

D.3 A Primer on Non-Uniform Computation

Non-uniform computation is a standard notion from complexity theory (see e.g. [3]). We say an
algorithm is non-uniform if it takes in an extra parameter, often referred to as an advice string.
However, the advice string is allowed to vary only with the size of the input (i.e. with m). Moreover,
the length of the advice string can grow only polynomially in the size of the input. If a problem
admits a non-uniform polynomial-time algorithm, this is equivalent to the existence of a family
of polynomial-sized boolean circuits for the problem. When we say a non-uniform algorithm is
polynomial-time MIWR, we mean that the algorithm runs in time polynomial in m, and maximizes
over a weighted range, regardless of the advice string. When we say a non-uniform algorithm
achieves an approximation ratio of α on m, we mean that there exists a choice of advice string for
input length m such that the algorithm always outputs an α-approximate allocation.
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