
Ad Auctions with Data?

Hu Fu1, Patrick Jordan2, Mohammad Mahdian3, Uri Nadav3, Inbal
Talgam-Cohen4, and Sergei Vassilvitskii3

1 Cornell University, Ithaca, NY, USA
2 Microsoft Inc., Mountain View, CA, USA
3 Google Inc., Mountain View, CA, USA
4 Stanford University, Stanford, CA, USA

Abstract. The holy grail of online advertising is to target users with
ads matched to their needs with such precision that the users respond
to the ads, thereby increasing both advertisers’ and users’ value. The
current approach to this challenge utilizes information about the users:
their gender, their location, the websites they have visited before, and so
on. Incorporating this data in ad auctions poses an economic challenge:
can this be done in a way that the auctioneer’s revenue does not decrease
(at least on average)? This is the problem we study in this paper. Our
main result is that in Myerson’s optimal mechanism, for a general model
of data in auctions, additional data leads to additional expected revenue.
In the context of ad auctions we show that for the simple and common
mechanisms, namely second price auction with reserve prices, there are
instances in which additional data decreases the expected revenue, but
this decrease is by at most a small constant factor under a standard
regularity assumption.

1 Introduction

When an item with latent characteristics is sold, information revealed by the
seller plays a significant role in the value ascribed to the item by potential buy-
ers. For example, when booking a hotel room on a website such as Priceline.com,
every extra piece of information—including the hotel’s star level or its location—
affects the price a buyer is willing to pay. In a similar manner, in online advertis-
ing scenarios, any information revealed about the ad opportunity—including the
description of the webpage’s content or the type of user—plays a crucial role in
determining the ad’s value, in particular because this information is extremely
useful in predicting the click and conversion rate of the user.

In online display advertising settings, the publisher auctions off opportunities
to show an advertisement to its users in real time, often through online ad
marketplaces operated by companies such as Yahoo!, Google or Microsoft. For
example, every time a user visits The New York Times website, the opportunity
to show an advertisement to the user is auctioned off. Both the publisher (in
this case The New York Times) and the market operator have a great deal of
information about the ad opportunity, including page specific features such as
layout and content, as well as user specific features such as the user’s age, gender,
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location, etc. How much of this information should be revealed during the auction
in order to maximize revenue? This is the question we study in this work.

While concealing information can only decrease social efficiency, it may be
advantageous in terms of revenue, since releasing information may decrease com-
petition. As an example, suppose an advertiser values males at $2 and females
at $8. In an incentive compatible auction, the advertiser bids his value when the
user’s gender is known, but will bid the expected value of $5 when the gender is
not revealed (assuming each gender is equally likely). If there is a second adver-
tiser who values males at $8 and females at $2, then revealing gender segments
the buyers. As a result, when gender is revealed the auctioneer will face a bid
of $8 and $2, and thus collect only $2 in a second price auction; if the gender is
kept hidden, the auctioneer will have two bids of $5 and will collect $5.1

The example above may seem to suggest that it is never in the auctioneer’s
interest to release information about the item. Indeed, Board [5] has shown that
revealing information can only decrease the expected revenue from a second
price auction with two bidders. However, the auctioneer has additional tools to
increase revenue at her disposal, namely she can set a reserve price for each
bidder. The right reserve price may counter the potential loss in competition,
allowing the auctioneer to preserve its revenue. In the example above, a reserve
price of $8 for both advertisers would lead to a revenue of $8 precisely in the
case where gender is revealed. On the other hand, it is not obvious that using
reserve prices or even applying the optimal mechanism is sufficient to recover
the lost revenue from revealing data; see Example 1 in Section 4.2 for a simple
case in which this does not hold.

Our Contribution In this work we study a general model of single-parameter
auctions with data. We show that while revealing information can lead to a
decrease in the expected revenue of second price auctions, using the revenue-
optimal mechanism counteracts this trend. Our main result is that if Myerson
[17]’s optimal auction mechanism is used, the expected revenue is guaranteed to
(weakly) increase when more information is revealed. This result also applies to
slot auctions and other settings.

We explore the assumptions of this result and show that they are necessary
for revenue monotonicity to hold. In particular, if instead of Myerson’s optimal
mechanism, a simpler reserve price based mechanism is used, revealing infor-
mation can lead to a decrease in expected revenue. However, we prove that in
simple and practical second price auctions with reserve prices, fully revealing
the auctioneer’s information generates approximately the optimal revenue even
compared with arbitrary intricate revealing schemes the auctioneer may adopt.

1.1 Related Work

The following scenario has been extensively studied in auction theory: The auc-
tioneer has access to a private source of data about the item; she wishes to

1 Perturbing this example slightly shows withholding information can decrease social
welfare.



maximize her expected revenue by pre-committing to a policy of revealing or
concealing data. Two effects of revealing data have been identified: the linkage
principle by Milgrom and Weber [15], and more recently the allocation effect by
Board [5]. The linkage principle says that when bidders’ valuations are positively
correlated in a specific way to the auctioneer’s data, the auctioneer can increase
her revenue in first or second price auctions by revealing the data. However, in
ad auctions, revealing information can increase the value to some advertisers
and decrease it for the rest, and so the linkage principle does not apply. The
allocation effect studies the effect of information revelation on revenue in second
price auctions as the number of bidders changes.

A recent line of research [9, 16] considers the computational problem of find-
ing the optimal information revelation scheme in second price auctions. In con-
trast, we study optimal auctions and their implications for auctions such as
second price auctions with reserve prices, and never second price auctions per
se. The valuation model of ours is also different. It is neither deterministic nor
arbitrarily correlated, as studied by Emek et al. [9].

We briefly mention related work further afield. Levin and Milgrom [13] high-
light disadvantages of information revelation from a market design point of
view—too much information leads to thin markets that are hard to operate.
Several proposed mechanisms address these issues [4, 7]. Dwork et al. [8] dis-
cuss fairness concerns arising from revealing user data. A separate body of work
considers cases in which bidders, not the auctioneer, have private sources of
information about the item, resulting in asymmetries among them; a recent ex-
ample is Abraham et al. [1]. Ghosh et al. [10] study information revelation in ad
auctions through the process of cookie-matching, and its impact on the revenue
of the auction.

2 Preliminaries

We briefly describe Myerson [17]’s optimal truthful mechanism, under the in-
terpretation of Bulow and Roberts [6]. Given a valuation distribution F , each
probability quantile q corresponds to a value v = F−1(1 − q). Each value, in
turn, corresponds to an expected revenue v(1 − F (v)) generated by setting a
posted price of v. A revenue curve depicts such revenue R(q) = qF−1(1− q) as
a function of the quantile q, and the ironed revenue curve R̃(q) is the concave
hull of this curve. The ironed virtual valuation of v under the distribution F is
then ϕ̃(v) = dR̃(q)

dq |q=1−F (v).

Theorem 1 (Myerson 17). In a revenue optimal truthful auction in which bid-
ders’ valuations are independently drawn from known distributions D1, · · · , Dn,
the item is allocated to the bidder with the highest non-negative ironed virtual
valuation, and the expected revenue is equal to E[max{0, ϕ̃1(v1), . . . , ϕ̃n(vn)}].

3 Model

We describe a general model to which our main result applies, and show that ad
auctions are captured in a natural way as an instantiation of this model.



General model. n bidders compete in an auction, in which the subsets of bidders
who can win simultaneously are specified by I ⊆ 2[n], the feasible sets. Every
bidder i ∈ [n] has a private, single-dimensional signal si ∈ R+, drawn indepen-
dently from a publicly known distribution Fi with density fi. In addition, the
auctioneer also has a private signal u ∈ U , drawn from a publicly known discrete
distribution FU with density fU independently of the bidder signals. We also call
u an item type. Denote |U | by m. Bidder i’s value for winning the auction is
a publicly known function vi of his own signal si and the auctioneer’s signal u:
vi,u = vi(si, u). For every u we assume that vi(·, u) is non-negative and strictly
increasing in its argument si. Note that, under these constraints, u can affect
vi,u in a fairly general manner.

Signaling schemes. We adopt the framework for signaling schemes developed by
Emek et al. [9] and Miltersen and Sheffet [16] which has its origins in Milgrom
and Weber [15, see Theorem 9]. A signaling scheme is a set of m distributions
over a signal set Σ of size k. On seeing type u, the auctioneer sends a signal
σ ∈ Σ with probability ψu,σ, and then bidders bid their expected value inferred
from the posterior distribution on u given σ. It is important that the auctioneer
commits to a signaling scheme before the auction starts. In the case of fully
withdrawing the information, Σ has one element, which we call ū, and bidder i’s
posterior valuation in this case is denoted vi,ū = Eu∼FU

[vi,u]. In discussing this
scenario, we often equivalently talk about a fictitious item type ū, for which each
bidder i’s valuation is vi,ū.

Ad Auctions: An Instantiation. Ad auctions can be viewed as a special case
of the above general model. In this case one opportunity of displaying an ad
is auctioned to n bidders, and therefore the feasible sets I consist of single
winning bidders. In this scenario, the item type u may refelect the auctioneer’s
information on the user to whom the ad is to be shown. (For this reason we also
call u the user type.) A widely used model for ad auction is that a bidder i has
a private value si for a user to click his ad, and for each user type u there is
a particular probability pi,u with which the user does click. pi,u is the so-called
click-through rate. Now a bidder’s valuation is simply vi,u = vi(si, u) = pi,usi.

4 Full Revelation in Myerson’s Optimal Mechanism

In this section we present and prove our main result, which states that in My-
erson’s optimal mechanism, the expected revenue is monotone non-decreasing
in revealed information, and so full revelation of the auctioneer’s information
maximizes the expected revenue.

Other results on information revelation in the private-value setting focus on
the second price or English auctions [5, 14]. We first show, in the concrete context
of ad auctions, why applying Myerson’s mechanism gives different results. We
then briefly discuss how to extend our results for ad auctions to slot auctions.
In Section 4.2 we give a simple and general proof of the main result for the
single-parameter model introduced in Section 3.



4.1 Second Price Auction vs. Myerson’s Mechanism in Ad Auctions

Consider the two extreme signaling schemes of full revelation and no revelation.
We show why in contrast to the result of Board [5] for the English auction,
in Myerson’s mechanism the former scheme is always preferable to the latter in
terms of expected revenue (where expectations are taken over the random private
signals and, where appropriate, over the random user type). The optimality of
full revelation and monotonicity of expected revenue in information follow as
corollaries.

Proposition 1. In the ad auctions model, the expected revenue from Myerson’s
mechanism when the user’s type u is revealed is at least as high as the expected
revenue when u is not revealed.

For completeness we include Board’s result for 2 bidders (note that since
n = 2, the second price and English auctions are the same).

Proposition 2 (Board [5]). In a generalization of the ad auctions model with
n = 2 bidders, the expected revenue from the second price or English auction
when the user’s type u is not revealed is at least as high as the expected revenue
when u is revealed.

(a) Second price auction [5] (b) Myerson’s mechanism

Fig. 1: The Effect of Information Revelation

Figure 1, adapted from Board [5], provides intuition for the difference between
the above propositions (see also Palfrey [18], McAfee [14]). In the second price
auction, for every signal profile of the bidders, the revenue is the minimum of
their values and so a concave function. Therefore, while revealing information
produces the average of pointwise minimums, no revelation does at least as
well by producing the minimum of averages. By contrast, recall that applying
Myerson’s mechanism in our setting means that given user type u ∈ U ∪ {ū},
the auctioneer transforms the advertisers’ values {vi,u} into the corresponding
ironed virtual values {ϕ̃i,u}, and then allocates the impression to the advertiser



with highest non-negative ironed virtual value. The expected revenue is equal
to the expected ironed virtual surplus, and for every signal profile the ironed
virtual surplus is convex, so the effect of data revelation is reversed.

To formalize this intuition we need to show that the same relation that holds
for values before the transformation to ironed virtual values, when a bidder’s
value under no revelation is equal to his expected value under full revelation,
continues to hold after the transformation as well. This is established in Obser-
vations 1 and 2. The proof of Proposition 1 then applies convexity and Jensen’s
inequality to get the result.

Observation 1 Let advertiser i’s value be vi,u = pi,usi, where u ∈ U∪{ū} is the
user type and si ∼ Fi. Then vi,u is distributed according to Fi,u(x) = Fi(x/pi,u),
and the corresponding ironed virtual value function is ϕ̃i,u(x) = pi,uϕ̃i(x/pi,u).

Proof. The derivation of Fi,u is straightforward. The expression for the ironed
virtual value follows by looking at the revenue curves Ri and Ri,u corresponding
to distributions Fi and Fi,u respectively:

Ri,u(1− Fi,u(x)) = x(1− Fi,u(x))

= pi,u ·
x

pi,u
(1− Fi(x/pi,u))

= pi,uRi(1− Fi(x/pi,u)).

The ironed revenue curves are concave hulls of the revenue curves, and therefore
preserve the same relationship R̃i,u(1 − Fi,u(x)) = pi,uR̃i(1 − Fi(x/pi,u)). The
ironed virtual valuations, which are their derivatives, also satisfy the same linear
relationship. �

We can now compare the ironed virtual values with and without information
revelation ϕ̃i,u and ϕ̃i,ū. We show the latter equals the former in expectation.

Observation 2 ϕ̃i,ū(vi,ū) = Eu∼FU
[ϕ̃i,u(vi,u)].

Proof. We have

ϕ̃i,ū(pi,ūsi) = pi,ūϕ̃i(si) = Eu∼FU
[pi,u] ϕ̃i(si)

= Eu∼FU
[pi,uϕ̃i(si)] = Eu∼FU

[ϕ̃i,u(pi,usi)] ,

where the first and last equalities are by Observation 1, the second is by definition
of pi,ū, and the third is by linearity of expectation. �

Proof of Proposition 1. The expected revenue of Myerson’s mechanism is equal to
its expected ironed virtual surplus [17] [see also 11, Theorem 13.10]. We use this
result by Myerson to prove the proposition as follows. We show that pointwise
for every fixed profile of values per click (s1, . . . , sn), the ironed virtual surplus
of Myerson’s mechanism when u is revealed is at least as high as when u is not
revealed, in expectation over u. Taking expectation over profiles (s1, . . . , sn) and
applying Myerson’s result completes the proof.



Fix (s1, . . . , sn) and let u ∈ U be the user’s type. The ironed virtual surplus of
Myerson’s mechanism when u is revealed is max{0, ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}.
We will omit the term 0 from this point on, since we can always add a dummy
bidder whose valuation (and virtual valuation) is constantly 0. Taking expecta-
tion over u gives

Eu∼FU
[max{ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}] . (1)

If u is not revealed, the ironed virtual surplus of Myerson’s mechanism is

max{ϕ̃1,ū(p1,ūs1), . . . , ϕ̃n,ū(pn,ūsn)}.

By Observation 2, this is equal to

max {Eu∼FU
[ϕ̃i,u(pi,usi)]}ni=1. (2)

Since max is a convex function, by Jensen’s inequality (1) ≥ (2). We conclude
that in expectation over u, revealing the user’s type u does not reduce the ironed
virtual surplus. �

So far we have considered only two possible signaling schemes for the auc-
tioneer: either to fully reveal the user’s type or to conceal it. A direct corollary
of Proposition 1 is that the full revelation strategy yields the highest expected
revenue among all possible signaling schemes.

Corollary 1. In the ad auctions model, the expected revenue from Myerson’s
mechanism when the user type is revealed is optimal among all signaling schemes.

Proof. Consider a signaling scheme {ψu,σ}u∈U,σ∈Σ . Condition on the revealed
signal σ. Recall that together with the scheme {ψu,σ} and the distribution FU ,
it induces an ex post distribution FU |σ on the user types. We can now apply
Proposition 1 to the setting in which u ∼ FU |σ, and conclude that the expected
revenue from full revelation of u is at least as high as the expected revenue from
revealing σ. Taking expectation over σ ∈ Σ completes the proof. �

Furthermore, Proposition 1 implies monotonicity of optimal expected revenue
in information release—adding any signaling scheme to Myerson’s mechanism
can only improve expected revenue.

Corollary 2. In the ad auctions model, the expected revenue from Myerson’s
mechanism with a signaling scheme is at least the expected revenue from Myer-
son’s mechanism with no signaling.

Proof. Let fU be the density of the user types in the original setting, and let
{ψu,σ}u∈U,σ∈Σ be the signaling scheme. Now consider the following alternative
setting: A user type σ is sampled from Σ with probability

∑
u∈U fU (u)ψu,σ,

and the bidders’ values are {vi,σ}. Observe that the expected revenue from My-
erson’s mechanism with signaling scheme {ψu,σ} in the original setting equals
the expected revenue from Myerson’s mechanism with full revelation in the new
setting. Similarly, the expected revenue from Myerson with no signaling is the
same in both settings. Applying Proposition 1 to the new setting we get that
the expected revenue from full revelation of σ is at least as high as the expected
revenue from no revelation, completing the proof. �



Generalization to Slot Auctions A particular case of practical interest is slot
auctions, in which the auctioneer has k slots {1, · · · , k} to sell to the advertisers,
and an advertiser’s value for winning depends on the particular slot he gets. We
extend our result for ad auctions to show that full information revelation is the
optimal signaling scheme for optimal slot auctions. The main thing to show is
that the ironed virtual surplus remains convex.

Formally, the slots have intrinsic click through rates α1 ≥ α2 ≥ · · · ≥ αk.
An advertiser’s valuation for a user of type u at slot j is αjpi,usi. By the same
argument as in Observation 1, his ironed virtual valuation is αjpi,uϕ̃i(si). The
optimal auction ranks the k bidders with highest non-negative ironed virtual
valuations and maps them to the k slots accordingly (if there are fewer than k
bidders with non-negative ironed virtual valuations then the remaining slots are
not sold). The auctioneer’s expected revenue is then the expected sum of the
k highest ironed virtual valuations. Just as the proof of Proposition 1 and its
corollaries relies on the fact that taking maximum is a convex function, a similar
full revelation statement for slot auctions follows from the next observation,
whose proof is a consequence of the rearrangement inequality and appears in
the appendix.

Observation 3 The function Mk(v1, . . . , vn) =
∑k
j=1 αj max-j{v1, . . . , vn} is

a convex function in (v1, . . . , vn), where max-j{v1, . . . , vn} is the j-th largest
element from the set {v1, . . . , vn}.

For space consideration we omit the proof of this, which is a simple application
of the rearrangement inequality.

By the same argument as before using Jensen’s inequality, we obtain

Corollary 3. In slot auctions, the expected revenue from Myerson’s mechanism
when the user type is revealed is optimal among all signaling schemes.

4.2 General Model

We extend the optimal revelation results in Section 4 to the general single-
parameter model introduced in Section 3. The proof there uses the specific form
of ironed virtual values found in this model (also used in Section 5.1). The specific
ironed virtual values form is not necessary for the result to hold, and here we
prove a general full revelation result for Myerson’s mechanism based only on its
optimality and monotonicity, and not on the details of its allocation rule.

Proposition 3. In the general single-parameter model with values vi,u = vi(si, u),
where vi is non-negative, strictly increasing in si and continuously differentiable
for every i, the expected revenue from Myerson’s mechanism when the auction-
eer’s information u is revealed is optimal among all signaling schemes.

Proof. Similarly to ad auctions, it is sufficient to compare full revelation to no
revelation. Assume full revelation, and fix the revealed signal of the auctioneer
to be u ∈ U . We define the following auxiliary mechanism M . Mechanism M



receives reported values {vi,u} from the bidders. By the assumption that vi,u =
vi(si, u) is strictly increasing in bidder i’s signal si, for every i and u there is a
one-to-one relation between bidder i’s signals and values. Therefore mechanism
M may recover the bidders’ signals from their reported values. It then finds
{vi,ū}, the set of values that would have been reported by the bidders if no
data had been revealed. Finally, M runs Myerson’s mechanism on these values,
assuming they’re drawn from distributions {Fi,ū}.

We first claim that the auxiliary mechanism M is truthful, i.e., that its
allocation rule is monotone in the reported values {vi,u}. Fix i and s−i. We
want to show that increasing vi,u can only cause M to allocate to bidder i more
often. By truthfulness of Myerson’s mechanism, we know that M is monotone
in vi,ū. Again by the assumption that vi,u is strictly increasing in si for every
u, the expectation vi,ū is also strictly increasing in si. So M is monotone in si,
and thus also in vi,u, as required.

Consider the expected revenue of the auxiliary mechanism M . On one hand,
in expectation over u ∼ FU and the signal profile s, its revenue equals that of
Myerson’s mechanism with no data revelation. On the other hand, for every fixed
u ∈ U , Myerson’s mechanism with full revelation does at least as well as M in
terms of expected revenue over the signal profile, simply because it is optimal.
We conclude that the expected revenue of Myerson with full revelation is at least
as high as with no revelation, completing the proof. �

The following example shows that optimality of full revelation does not hold
without the assumption that a bidder’s value is strictly increasing in his signal.

Example 1. Assume u is distributed uniformly over {0, 1}, and there’s a single
bidder whose private signal s is distributed uniformly over a discrete support
{1, 2, 3}. When u = 0, the bidder’s value is just his signal, i.e., v(s, 0) = s. When
u = 1, the values are v(s, 1) = 4 − s. Then with full revelation, the maximum
expected revenue is 4

3 by setting a reserve price of 2. When no information is
revealed, the bidder’s value is vū = 2 and so the expected revenue is 2.

5 Full Revelation in Simple Auctions with Reserve Prices

In this section we show several results relating to simple, commonly-used ad
auctions, namely second price auctions with anonymous reserves, and second
price auctions with monopoly reserves. In the former, a single reserve price is
applied to all advertisers, and only those who bid above the reserve compete in
a second price auction. In the latter, a distinct monopoly reserve price is ap-
plied to each advertiser, and advertisers who bid above their respective reserves
enter the second price auction. The monopoly reserve price for a bidder with
regular distribution is the optimal price for the auctioneer to set in an auction
where only this bidder participates. Equivalently, it is equal to the value v whose
corresponding virtual value ϕ(v) is 0.

First, in Section 5.1, we complement our results for optimal ad auctions by
showing that in second price auctions with reserves, fully revealing information



is approximately optimal among all signaling schemes, provided that advertis-
ers’ distributions are regular. This is encouraging in light of previous results on
signaling in second price auctions without reserves: Emek et al. [9] showed that
finding the optimal signaling scheme is NP-hard, and no approximation algo-
rithm is known yet. We note that in practice, second price auctions with reserve
are more common than those without reserve.

In Sections 5.2 and 5.3, we demonstrate that full revelation in simple auctions
can be sub-optimal. In fact, revealing no information at all can sometimes leave
the auctioneer better off, even for distributions such as the uniform distribution,
although by no more than a small constant factor, as we show in Section 5.1.

5.1 Approximation Guarantee in Simple Ad Auctions

We recall the following result of Hartline and Roughgarden [12] on the perfor-
mance of second price auctions with reserves.

Theorem 2. For every single-item setting with values drawn independently from
regular distributions,

1. the expected revenue of the second price auction with the optimal anonymous
reserve price is a 4-approximation to the optimal expected revenue; and

2. the expected revenue of the second price auction with monopoly reserves is a
2-approximation to the optimal expected revenue.

Corollary 4. In ad auctions, when bidders’ valuations per click si are indepen-
dently drawn from regular distributions, fully revealing the type in a second price
auction with anonymous reserve (monopoly reserves, resp.) is a 4-approximation
(2-approximation, resp.) to the expected revenue of the optimal signaling scheme.

Proof. Consider an optimal signaling scheme in a second price auction with
reserves. Under the same signaling scheme, running Myerson’s optimal auction
would extract at least the same expected revenue. By Corollary 1, fully revealing
the user type is optimal among all signaling schemes in Myerson’s auction. Then
for every user type u, we apply Observation 1 and the regularity of the si’s
to establish regularity of the vi,u’s, and so a second price auction with reserves
extracts a 4 (or 2)-approximation by Theorem 2. We conclude that fully revealing
the information u in a second price auction with reserves extracts a 4 (or 2)-
approximation to the revenue obtained by Myerson’s optimal auction with full
information revelation. The corollary follows from this chain of bounds. �

5.2 Revenue Loss with Anonymous Reserve

This section gives an example in which announcing the item type decreases the
revenue of the second price ad auction with the optimal anonymous reserve price.

The example has n = 2 bidders and m = 2 item types, with FU being uniform
between the two types. Bidder 1’s valuation for a “high” type is uniformly drawn
from [0, 2], and for a “low” type is 0. Bidder 2 is not sensitive to the types and her
valuation is drawn uniformly from [0, 1] regardless of the type. When the type
is not announced, the optimal auction is a second price auction with reserve



price 1/2, and the optimal revenue is 5/12. When the type is revealed to be low,
the optimal auction is a second price auction with a reserve price 1/2, and the
revenue is 1/4. When the type is revealed to be high, if we set a reserve price of
x ∈ [0, 1], the revenue is

x
[
x(1− x

2
) +

x

2
(1− x)

]
+

∫ 1

x

y(1− y

2
) +

y

2
(1− y) dy =

3

4
x2 − 2

3
x3 +

5

12
.

This is maximized at x = 3/4, yielding a revenue of 9
64 + 5

12 . Setting a reserve
price in [1, 2] does no give a revenue better than 0.5. Therefore, for a high type,
the revenue of an optimal second price auction with anonymous reserve is 9

64
more than 5

12 , whereas for a low type the revenue is 1
6 less. On average, if we

reveal the type, the expected revenue is strictly less than 5
12 .

5.3 Revenue Loss with Monopoly Reserves

This section presents an example in which announcing the item type decreases
the revenue of the second price ad auction with monopoly reserve prices.

As in the previous section, we assume 2 bidders and 2 types, with FU being
uniform. Bidder 1’s valuation is uniformly drawn from [0, 8] for a “high” type,
and uniformly from [0, 4] for a “low” type, whereas bidder 2 is not sensitive to the
item type and her valuation is uniformly drawn from [0, 6] regardless of the type.
When the type is not revealed, the optimal auction is a second price auction with
reserve price 3, and the expected revenue is 2.5. When the type is revealed to be
high, the monopoly reserves are 4 and 3, respectively. The expected revenue is:

4 · Pr(v1 ∈ [4, 8], v2 ∈ [0, 3]) + 3 · Pr(v1 ∈ [0, 4], v2 ∈ [3, 6]) +

4 · Pr(v1 ∈ [4, 8], v2 ∈ [3, 4]) +
14

3
· Pr(v1, v2 ∈ [4, 6]) +

5 · Pr(v1 ∈ [6, 8], v2 ∈ [4, 6]) = 2.889.

When the type is revealed to be low, the monopoly reserves are 2 and 3,
respectively. The expected revenue is:

2 · Pr(v1 ∈ [2, 4], v2 ∈ [0, 3]) + 3 · Pr(v1 ∈ [0, 2], v2 ∈ [3, 6]) +

3 · Pr(v1 ∈ [2, 3], v2 ∈ [3, 6]) +
7

2
· Pr(v1 ∈ [3, 4], v2 ∈ [4, 6]) +

10

3
· Pr(v1, v2 ∈ [3, 4]) = 2.0556.

Thus, the expected revenue when the type is revealed is 2.4722 < 2.5.

6 Conclusion and Open Questions

Incorporating data into ad auctions raises many questions of practical impor-
tance to which our work may be applicable. We mention two open questions:



(1) In simple second price ad auctions, an intermediate revelation scheme may
generate more revenue than both full revelation and no revelation. Can the auc-
tioneer find such a scheme in a computationally efficient way? This question
was studied by Emek et al. [9] in settings either more general or more restricted
than ours, and remains open for the ad auctions model. (2) Can the auctioneer
increase her revenue by asymmetric revelation of information to the bidders,
perhaps charging them appropriate prices for the information? The answer will
involve overcoming several challenges, some of which are studied in [1, 2, 3].
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