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We present a result by Lipton et al. (2003) on the existence of sparsely supported approximate
Nash equilibria.

We wlil make use of the following Chernoff-Hoeffding Inequality. In the list of exercises we gave
a guided proof of it. You may also refer to the handouts on these bounds.

Theorem 1 (Chernoff-Hoeffding Inequality). Let X1, · · ·Xn be independently drawn random vari-
ables, each of which takes value in [0, 1] with probability 1. Let X be their average, 1

n

∑
iXi. For

any ε > 0, we have

Pr
[
X −E [X] ≥ ε

]
≤ e−2nε2 ;

Pr
[
X −E [X] ≤ ε

]
≤ e−2nε2 .

We focus on a two player game where the action sets of the two players, A1 and A2, are both
of size m. Recall that we use ui : A1 × A2 → R to denote the utility function of player i. Nash
has shown that a Nash equilibrium is guaranteed to exist. The following theorem shows that, if
we relax the solution concept and require only that the players cannot unilaterally improve their
utilities by too much, then there is always an equilibrium with sparse support, i.e., the number of
actions played with positive probability is logarithmic in m.

Definition 1. For ε > 0, a strategy profile (s1, s1) ∈ ∆(A1) × ∆(A2) is an ε-approximate Nash
equilibrium if, for either player i and any deviation a ∈ Ai, we have ui(si, s−i) ≥ ui(a, s−i)− ε.

Without loss of generality, we will normalize the utilities so that ui(a1, a2) ∈ [0, 1], for any
i, a1 ∈ A1, a2 ∈ A2.

Theorem 2 (Lipton et al., 2003). For any ε ∈ (0, 1), there exists an ε-approximate Nash equilibrium
in which each player plays O(logm/ε2) strategies with positive probability.

The proof is an instance of the probabilistic method, proving the existence of an object by
showing that the probability of its occurrence is strictly positive. The idea is that working on a
large enough set of samples i.i.d. drawn from a distribution is not much different from working on the
original distribution — the very same idea as for Empirical Risk Minimization in machine learning.
The bulk of the argument is to calculate the necessary size of the sample set to approximate the
original distribution.

Proof. By Nash’s theorem, a Nash equilibrium always exists. Let (s∗1, s
∗
2) be a Nash equilibrium.

Take k i.i.d. samples, ai1, . . . , aik, from Ai, according to the distribution s∗i , for each i ∈ {1, 2}.
Let s̃i be the “empirical” strategy, which plays one of the k sampled actions uniformly at random.
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We will show that, when k is Ω(logm/ε2), with positive probability, for each player i and action a ∈
Ai, ui(a, s

∗
−i)− ε

2 ≤ ui(a, s̃−i) ≤ ui(a, s
∗
−i) + ε

2 , which implies,

ui(a, s̃−i) ≤ ui(a, s∗−i) +
ε

2
≤ 1

k

k∑
j=1

ui(aij , s
∗
−i) +

ε

2
≤ 1

k

∑
j

ui(aij , s̃−i) + ε = ui(s̃i, s̃−i) + ε. (1)

(In the second inequality we used the fact that any action played with positive probability in a
Nash equilibrium gives no less utility than any other action against the opponent’s Nash strategy.)
In other words, with positive probability, (s̃1, s̃2) constitutes an ε-approximate Nash; since s̃i is
supported on k actions, this proves the theorem.

In the sequel we focus on bounding the probability with which ui(a, s̃−i) differs from ui(a, s
∗
−i)

by more than ε/2, for any a ∈ Ai. Note that ui(a, s̃−i) = 1
k

∑k
j=1 ui(a, a−i,j); as a−i,j is a random

action drawn from the distribution s∗−i, the expectation of ui(a, a−i,j) is just ui(a, s
∗
−i). Therefore

ui(a, s̃−i) is the average of k i.i.d. random variables, each taking values from [0, 1], with expectation
equal to ui(a, s

∗
−i). We are interested in the probability with which this average deviates from its

expectation by a margin of ε
2 . This is precisely the situation to which the Hoeffding Inequality

applies.
Apply Hoeffding inequality, we have

Pr

[
|ui(a, s̃−i)− ui(a, s∗−i)| >

ε

2

]
≤ 2e−kε

2/2.

Let’s call the event |ui(a, s̃−i) − ui(a, s∗−i)| > ε
2 the bad event for action a ∈ Ai. There are 2n

such events as a ranges over A1 ∪ A2. Using the union bound, the probability that any of these
2n events happens is at most 4ne−kε

2/2. For k > 2 log(4n)/ε2, this is smaller than 1, and therefore
with positive probability, none of the bad events happen. (1) shows that the corresponding (s̃1, s̃2)
is an ε-approximate Nash equilibrium.

Remark 1. This existence theorem also gives rise to an algorithm for computing an approximate
Nash equilibrium: by simply enumerating the sample sets and verifying whether the resulting
“empirical” strategies constitute an approximate Nash equilibrium. This runs in time mO(logm/ε2).
This is called a quasi-polynomial time algorithm. There are various faster algorithms for special
games. For example, Barman (2018) showed that, if in a two-player game with m actions for
each player, any column of sum of their utility matrices contains no more than s nonzero entries,
then there is an algorithm computing an ε-approximate Nash in time mO(log s/ε2). Alon et al.
(2013) gave a polynomial-time approximating scheme (PTAS) for the case when the sum of utility
matrices has logarithmic rank. In general, however, the quasi-polynomial time algorithm of LLM is
asymptotically best possible, if certain complexity hypothesis true: Rubinstein (2016), in his tour de
force paper, showed that there is an ε > 0 for which computing an ε-approximate Nash equilibrium

for two-player games needs time mlog1−o(1)m, assuming the Exponential Time Hypothesis for PPAD.

Remark 2. We showed the theorem for two players, but it is straightforward to extend it to similar
statements for general games with more players.
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