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These notes contain exposit aspects of Myerson’s revenue optimal mechanism. The first part
explains a natural thought process that would lead one from the characterization of revenue (as
virtual surplus, Lemma 1) to the procedure of ironing, all from first principles. The second part is
a sketch of the steps taken to derive Myerson’s auction (with ironing) using revenue curves.

1 Setting and Notations

We have a single item to sell, and each bidder i’s value vi is drawn independently from a knwon
distribution whose cumulative density function is Fi with derivative fi.

We denote by xi(vi, v−i) the allocation to bidder i when the bid/value profile is vi and v−i, and
pi(vi, v−i) the payment made by bidder i. We use xi(vi) to denote the interim allocation when
bidder i’s value is vi, i.e., xi(vi) = Ev−i [xi(vi, v−i)], and similarly for pi(vi).

2 Ironing

In this section we explicate a natural thought process that leads one to the precise form of ironing.
Section 3 can be largely seen as another way of doing this. The starting point of the thought process
here is Lemma 1, the characterization of revenue as virtual surplus, whereas Section 3 departs from
Myerson’s original proof at an earlier point.

Lemma 1 (Myerson, 1981). A mechanism is Bayesian incentive compatible (BIC) if and only if for
each bidder i, xi(·) is a non-decreasing function, and the payment pi(vi) = vixi(vi) −

∫ vi
0 xi(t) dt.

Furthermore, the expected revenue of a BIC mechanism is
∑

i Evi [xi(vi)ϕi(vi)], where ϕi(vi) =

vi − 1−Fi(vi)
fi(vi)

is the virtual value of vi.

A distribution Fi is said to be regular iff ϕi(vi) is a non-decreasing function of vi. When all
bidders’ value distributions are regular, it is straightforward to see that allocating to the bidder
with the highest nonnegative virtual value maximizes the the expression

Rev =
∑
i

Evi

[
xi(vi)

]
=
∑
i

Ev

[
xi(v)

]
,

and the resulting allocation rules are obviously monotone. However, when the distributions are
not regular, this may not produce an incentive compatible mechanism. In order to remedy this,
Myerson introduced the “ironing” procedure. We explain the intuition. The goal is to transform an
irregular distribution so that regularity is restored, while any monotone allocation rule is guaranteed
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to generate no more revenue with respect to the original distribution than with respect to the new
distribution.

Lemma 2. For any bidder i, let [a, b] be an interval on which ϕi(·) is non-increasing, and xi(·) be
the allocation rule of any Bayesian incentive compatible mechanism. Then the allocation rule

x′i(vi) =

 xi(vi), vi ∈ [0, a) ∪ (b,+∞)∫ b
a xi(t) dt

Fi(b)−Fi(a) , vi ∈ [a, b].

is a feasible, monotone allocation rule, and its revenue is no less than that of xi(·).

Proof. The new allocation rule “pools” the types in [a, b], and gives them the average allocation
on the interval. The monotonicity of x′i(·) is immediate from the monotonicity of xi(·). That it
generates more revenue is quite intuitive. We give a formal argument: for vi /∈ [a, b], x and x′i
are identical and hence generate the same virtual surplus; on [a, b], let Fi[·|vi ∈ [a, b]] denote the
conditional distribution of vi given vi ∈ [a, b] (which simply has density fi/(Fi(b)− Fi(a))),∫ b

a
x′i(vi)ϕi(vi)fi(vi)dvi =

∫ b
a xi(vi)fi(vi) dvi

Fi(b)− Fi(a)
·
∫ b

a
ϕi(vi)fi(vi) dvi

= Evi∼Fi[·|vi∈[a,b]]
[
xi(vi)

]
·Evi∼Fi[·|vi∈[a,b]]

[
ϕi(vi)

]
(Fi(b)− Fi(a))

≥ Evi∼Fi[·|vi∈[a,b]]
[
xi(vi)ϕi(vi)

]
(Fi(b)− Fi(a)) =

∫ b

a
xi(vi)ϕi(vi)fi(vi) dvi.

The inequality is an application of Harris inequality, which states that for any non-decreasing func-
tion f and non-increasing function g on R and any probability measure on R, E[fg] ≤ E[f ] E[g].1 It
is here that we make use of the assumption that xi is monotone non-decreasing and ϕi is monotone
non-increasing on [a, b].

To see that x′i is feasible, we describe a mechanism that implements it, which uses as a black
box any mechanism M that implements xi: for any v−i, when bidder i reports vi /∈ [a, b], allo-
cate xi(vi,v−i); for vi ∈ [a, b], randomly draw another value v′i from Fi[·|vi ∈ [a, b]], and allocate
xi(v

′
i,v−i). This mechanism is feasible because it can be also seen as running M while doing the

resampling for bidder i. From the point of the view of the mechanism, bidder i’s value distribu-
tion is still Fi; in other words, the resampled distribution and the original distribution are not
distinguishable.

For revenue optimality, Lemma 2 allows us to restrict attention to only mechanisms whose
allocation rule xi is flat on [a, b]. But any such mechanism is in fact indifferent if we were to replace
each of the virtual values on [a, b] by their (weighted) average, Evi∼Fi[·|vi∈[a,b]][ϕi(vi)], as Figure 1b
shows.

This operation, known as “ironing”, flattens the virtual value function on [a, b], but the resulting
function is still not monotone, as there is a sharp drop at both points a and b. It would be natural
to repeat the procedure in Lemma 2: whenever the “next type” after the right end of the ironed
region has a virtual value below the flattened area, one may extend the ironed region to include
that type; the ironed region’s virtual value drops while that of the “next type” rises, so the gap

1This fact, which is not hard to prove, is an analog of Chebyshev’s sum inequality for discrete domains; the Harris
inequality itself is a special case of the FKG inequality.
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Figure 1: A virtual value function with a decreasing interval [a, b] and (näıve) ironing of that
interval.
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Figure 2: Extending the ironed region rightward and the final ironed region.
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becomes smaller. One may repeat this until there is no drop at the right end of the ironed region.
However, this procedure keeps pulling down the ironed region, which only enlarges the drop at a,
the left end of the ironed region (Figure 2a). So in fact one needs to include the type “immediately
preceding” a in the ironed region as well, and one should keep repeating the procedure until there
is no drop at the left end of the ironed region. But then the right end now may again see a drop
since the flattened area rose.

The question boils down to deciding on an interval [a′′, b′′], so that when ironing over [a′′, b′′],
the resulting average virtual value is no smaller than what lies on the left of a′′ and no larger than
what lies on the right of b′′ (assuming the virtual value is monotone elsewhere).

Of course we are under other constraints, as otherwise ironing the whole value space trivially
satisfies this. Recall that, in the region-growing procedure, we could assimilate a type immediately
preceding or succeding the interval only if there is non-monotonicity at the type (as required by
the conditions of Lemma 2). If we denote by ϕi([c, d]) the average virtual value on [c, d]:

ϕi([c, d]) :=

∫ d
c fi(vi)ϕi(vi) dvi

Fi(d)− Fi(c)
,

then the constraint on the ironed region [a′′, b′′] could be stated as:

(i) ϕi(a
′′) ≤ ϕi([a

′′, b′′]) ≤ ϕi(b
′′);

(ii) for any c, d such that [c, d] ⊆ [a′′, b′′], ϕi(c) ≥ ϕi([c, d]) ≥ ϕi(d).

How were one to think about these constraints involving every possible pair of values? Let’s
make an analogy for ϕi([c, d]) in physics terms. If we see ϕi(vi) as the instantaneous veolocity of a
body moving on a straight line and fi(vi) as the length of time during which the body moves at this
speed, then ϕi([c, d]) describes the average speed during time from Fi(c) to Fi(d). The constraints
on the choice of a′′, b′′ can now be translated in terms of velocities in this new space:

(i’) the instantaneous speed at time F (a′′) should be no more than the average speed on [F (a′′), F (b′′)],
which in turn should be no more than the instantaneous speed at F (b′′);

(ii’) for any [c, d] ⊆ [a′′, b′′], the instantanenous speed at time F (c) should be no less than the aver-
age speed on [F (c), F (d)], which is in turn no less than the intantaneous speed at time F (d).

It is now natural to view the problem from the perspective of distance traveled, plotted against
the time elapsed.2 For each value vi, the total time elasped is Fi(vi), and the total distance traveled
is
∫ vi
0 fi(t)ϕi(t) dt. Figure (3a) shows such a plot. One may call the distance here the cumulative

virtual value, and the time is naturally the cumulative density.
In this plot, the derivative of the plotted function at Fi(c) is the “instantaneous speed” at this

point, which is ϕi(c); if we connect by a straight line two points whose x-coordinates are Fi(c) and
Fi(d) respectively, then the slope of the line is the “average speed over [c, d]”, which is ϕi([c, d]).
The requirements on the final ironed region [Fi(a

′′), Fi(b
′′)] can now be translated as

2One may recall the well-known interview question where, given an array of natural numbers, one is asked to
construct a linear sized data structure that allows to compute, in constant time, of the sum of elements over any
consecutive segment of the array. The simplest answer is to store the partial sum from the first element to the k-th,
for each k. When asked to compute the sum over the segment going from the i-th element to the j-th, one simply
takes the difference between the j-th and the (i− 1)-st stored partial sum.
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(a) The slope of the line connecting Fi(c) and Fi(d) is ϕi([c, d]).
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Figure 3: Taking the convex hull of the “cumulative virtual value” plotted against the cumulative
probabilities.

(i”) When replacing the function on [Fi(a
′′), Fi(b

′′)] by a straight line connecting the two ends,
we should see a convex function (assuming the function was originally convex to the left of
Fi(a) and to the right of Fi(b);

(ii”) For any c ∈ [a′′, a] and d ∈ [b, b′′], the derivative of the distance function at Fi(c) should be
no less than the slope of the line connecting Fi(c) and Fi(d), which in turn should be no less
than the derivative at Fi(d).

If we assume ϕi(·) to be monotone on [0, a) and (b,+∞), that is, the “cumulative virtual value”
function plotted in Figure (3a) is convex on [0, Fi(a)) and on (Fi(b), 1], then it is not hard to see that
the above two requirements stipulate that [Fi(a

′′), Fi(b
′′)] should be the interval “straightened out”

when one takes the convex hull of the cumulative virtual value function. Without the assumption
on the monotonicity of ϕi(·) on [0, a) ∪ (b,∞], we may have multiple regions to iron and they
all correspond to the straightened out regions when one takes the convex hull for the plot of the
“cumulative virtual value” against the cumulative probabilities. We therefore obtain the following:

Definition 1 (Ironed virtual values.). For a bidder with virtual value function ϕ(v), let {[a1, b1], . . . , (ak, bk)}
be the intervals that are straightened out when one takes the convex hull for the plot of the cu-
mulative virtual value

∫ v
0 f(v)ϕi(v) dv plotted against the cumulative probability F (v). The ironed

virtual value ϕ̃(v) is

ϕ̃(v) =


∫ bi
ai

ϕ(t)f(t) dt

F (bi)−F (ai)
, v ∈ [ai, bi];

ϕ(v), otherwise.
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Theorem 3. The revenue of any incentive compatible auction with allocation rules (xi(·))i has
revenue at most

∑
i Evi∼Fi [xi(vi)ϕ̃i(vi)].

With an argument similar to the case of regular distributions (i.e., pointwise optimality imme-
diately implies optimality in expectation), we have

Corollary 1 (Optimal auctions for general value distributions (Myerson, 1981).). In a single item
auction where bidders’ values are drawn independently, a revenue optimal auction allocates to the
bidder with the highest non-negative ironed virtual value. The resulting allocation rule is monotone
and can be supported by a payment that guarantees incentive compatibility.

Remark 1. The “distance” or “cumulative virtual value” provided valuable insight on the regions
to iron. One may justifiably wonder what it is, that is, what economic meaning it has, if any.
Recall the cumulative virtual value for value v is

∫ v
0 ϕ(t)f(t) dt/F (v). If we apply Lemma 1 in a

formal manner (and forgetting about the monotonicity constraint), this would be the revenue of
a mechanism that allocates to a bidder only when her value is below v and otherwise does not
sell — of course there is no incentive compatible mechanism that implements such an allocation
rule, but the “complement” of it, which sells only when the value is above v, is implementable,
by simply a posted price at v. Therefore the cumulative virtual values are the “reverse” of the
revenues obtainable by posted prices. In Section 3 we rederive Myerson’s theorem starting from
the so-called revenue curves.

3 Derivation of Myerson’s Auction Using Revenue Curves

This section sketches the key steps in the derivation of Myerson’s mechanism, including ironing,
using revenue curves.3 This alternative perspective has the advantage that it gives Myerson’s
revenue optimal auction an interpretation that is analogous to a monopolistic pricing problem (first
observed by Bulow and Roberts (1989)), and sheds light on many single-item pricing problems.

We derive Myerson (1981)’s optimal mechanism in six steps. Seeing (ironed) virtual values as
the derivatives of the (ironed) revenue curve comes from Bulow and Roberts (1989), although the
actual proof idea here comes from Alaei et al. (2013).

1. Characterization of Bayesian incentive compatible mechanisms. Every BIC mech-
anism has monotone allocation rule, i.e., xi(vi) is nondecreasing with vi. Moreover, the
expected payment is determined by the allocation rule: pi(vi) = vixi(vi)−

∫ vi
0 xi(s) ds.

Note: The characterzation is really more about IC than about BIC. For example, any DSIC
mechanism must have its allocation rule xi(vi, v−i) monotone in vi given any v−i, and the
payment pi(vi, v−i) is also determined as vixi(vi, v−i)−

∫ vi
0 xi(s, v−i) ds.

2. Decomposition into step functions. Any monotone allocation rule is the convex decom-
position of step functions. In other words, the function xi(vi) can be written as the weighted
sum of some step functions, and the weights are nonnegative and sum to 1. (In the continu-
ous case, we have an integral instead of a sum.) We would like to determine the weights or
density of these step functions in this decomposition. Let us try to determine the weight of

3For full details, the reader is referred to the textbook by Jason Hartline. Later versions of this note may fill in
more details.
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the step function that jumps from 0 to 1 at v. Intuitively, the value v’s allocation is x′i(v) dv
more than the value that is slightly below it; this difference should be the probability that
this particular step function is used, and so the weight should be x′i(v) dv.

3. Calculating revenue using posted prices. By revenue equivalence (i.e., that payment is
determined by the allocation rule), to implement any monotone allocation rule, it is equivalent
to randomize over a set of allocation functions that are step functions, where the probability
of running the step function that jumps from 0 to 1 at value v is x′i(v)dv. Such a step function
is implemented by a posted price at v, and its expected revenue is v(1−Fi(v)). The expected
revenue of any allocation rule xi is therefore∫ ∞

0
[v(1− F (v))]x′i(v) dv. (1)

Note that the integral over v here is not with respect to the density fi. We can already do
an integral by part at this point, and using the fact that v(1− F (v)) evaluates to 0 at both
0 and ∞, this integral is equal to∫ ∞

0
x(v)[vfi(v)− (1− Fi(v))] dv =

∫ ∞
0

xi(v)

[
v − 1− Fi(v)

fi(v)

]
fi(v) dv.

The last step, extracting the factor fi(v) from the bracket, gives us the expression for virtual
surplus with respect to the virtual value. This is the expression in Myerson’s original proof.
Note that here, by having the density function as the measure, it is as if we are taking
expectation with respect to v drawn from its original distribution. This meaning was not
there in (1). This change of meaning in the integral variable is crucial, and it is one of the
motivations for us to move from the value space to quantile space.

4. Passing to the quantile space. As we have seen, the integral (1) is with respect to a
distribution of step functions (or posted prices), given by x′(v) dv, where the measure for v
itself is uniform. We could as well carry over to a uniform distribution on the compact domain
[0, 1] through the mapping ψi(v) = 1− Fi(v). ψi(v) is called the quantile of the value v. Let
yi : [0, 1] → [0, 1] be the quantile allocation function, that is, yi(q) = xi(ψ

−1
i (q)). In the

decomposition of the allocation rule, the step function jumping at v then has weight/density
−y′i(q) dq evaluated at q = ψi(v).4 Let Ri(q) = q · F−1i (1 − q) be the revenue of the step
function at (or, equivalently, the posted price of) v = ψ−1(q), the revenue (1) can be rewritten,
in terms of quantiles, as ∫ 1

0
Ri(q)(−y′i(q)) dq =

∫ 1

0
R′i(q)yi(q) dq, (2)

where the equality again follows by integral by part. Ri(q) is called the revenue curve.

Definition 2. A distribution Fi is said to be regular if its regular curve is concave.

4As a sanity check, −y′i(q) = −dxi(ψi(v))
dv

· dv
dψi(v)

∣∣∣∣
v=ψ−1

i (q)

= x′i(ψ
−1
i (q)), agreeing with our calculation before.
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Remark: Passing to the quantile space may seem strange at first. One of the advantages of
this switch is that it facilitates a perspective change. Instead of thinking about v(1− F (v)),
the revenue of a certain posted price, R(q) suggests the revenue of a selling strategy that
sells with ex ante probability q: setting a price at ψ−1i (q) is only one of such strategies. This
perspective immediately leads to a more general definition of revenue curve and ironing itself.

5. Generalization of revenue curves and Ironing. Let R̃i(q) be the optimal revenue ex-
tractable from bidder i with an incentive compatible mechanism that sells with ex ante prob-
ability q. Then obviously R̃i(q) ≥ Ri(q) for any q ∈ [0, 1]. Furthermore, by step 2, any IC
mechanism itself can be implemented by a distribution over posted prices. Therefore R̃i(q) is
simply the concave hull of Ri(q).

5

Note: For any q where R̃i(q) > Ri(q), the revenue of the posted price ψ−1i (q) is less than
the revenue of a distribution over two other posted prices, whose expected ex ante selling
probability is just q.

Now, the revenue of any BIC mechanism from bidder i is∫ 1

0
R′i(q)yi(q) dq =

∫ 1

0
Ri(q)(−y′i(q)) dq ≤

∫ 1

0
R̃i(q)(−y′i(q)) dq =

∫ 1

0
R̃′i(q)yi(q) dq. (3)

6. The optimal mechanism. The optimal mechanism maximizes its revenue with respect to
the RHS of (3), and in fact achieves it. By the inequality in (3), such a mechanism maximizes
the revenue as well, with equality therein attained.

Recall that yi(q) is the allocation of bidder i when her value is v = ψ−1i (q). Therefore, in order

to maximize
∫ 1
0 R̃

′
i(q)yi(q) dq, the optimal mechanism solicits bids v1, . . . , vn, and maps them

to quantiles ψ1(v1), . . . , ψn(vn), then observes the corresponding R̃′1(ψ1(v1)), · · · , R̃′n(ψn(vn)).
If the maximum among these is above zero, then allocate the item to this bidder; otherwise,
do not sell.

Remark: The quantity R̃′i(q) is the ironed virtual value of bidder i’s type that has quantile q.
It is “ironed” because in any region (q1, q2) where R̃i is strictly greater than Ri, R̃i is a straight
line and has all types in that region have the same ironed virtual value, and therefore, in the
optimal mechanism, they are all treated the same. Equivalently, any posted price whose
selling probability lies in (q1, q2) is used with probability 0 in the optimal mechanism. In
other words, the allocation rule is flat on (q1, q2). This is also necessary for the equality in
(3) to be attained.
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