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1 Basic Prophet Inequality

There are n boxes 1, 2, . . . , n. Each box i contains an invisible number vi ≥ 0 drawn from
distribution Fi independently. We know the distributions beforehand. The boxes arrive in the
order 1, 2, . . . , n. When box i arrives, we observe vi and need to decide whether to take the box or
not. If we take the box i, the game stops and our reward is vi; if we let box i pass, we cannot go
back to retrieve it.

An algorithmic task is to design an algorithm that, given the distributions F1, · · · , Fn, maximizes
the expected reward. After a moment’s thought, we recognize that the optimal algorithm is a
“backward induction”: if we wait till the last box, the expected reward we will get is E[vn]; given
this, when box n − 1 comes, we should only take any value greater than E[vn]; this allows us to
compute the expected value we get when we wait till the last two boxes, which we may use to
decide the threshold to be used for box n − 3, and so on and so forth. The backward induction
needs to know the order in which the boxes arriveis. When each box i arrives, the algorithm holds
a threshold θi such that we take box i if and only if vi ≥ θi. It is not hard to see that θi decreases
as i increases.

The prophet inequality problem, however, asks a question that is more about the value of
information. It is concerned with comparing the performance of an online algorithm with an
prescient benchmark: if a prophet knows beforehand all the values in the box, then the expected
performance of the prophet is E[max vi]. How well can an online which only knows the distribution
do in comparison to this benchmark?

Theorem 1. There exists a threshold θ such that accepting the first box with value at least θ
achieves expected value at least 1

2 E[maxi vi]. For any ε > 0, there is no online algorithm whose
performance is guaranteed to be at least (0.5 + ε) E[max vi].

1.1 Quantile Approach

Let the random variable v∗ be maxi vi. Then the cdf of v∗ is F =
∏
i Fi. Let θ be F−1(12). Let’s

assume Pr[∃i, vi = θ] = 0; this is true, for example, when all distributions are atomless. We show
that accepting the first box with value at least θ yields expected value at least 1

2 E[v∗].
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We first give an upper bound on the prophet’s value:

E
[
v∗
]

=
1

2
E
[
v∗ | v∗ < θ

]
+

1

2
E
[
v∗ | v∗ ≥ θ

]
≤ 1

2
θ +

1

2
E
[
θ + (v∗ − θ) | v∗ ≥ θ

]
= θ +

1

2
E
[
v∗ − θ | v∗ ≥ θ

]
= θ + E

[
(v∗ − θ)+

]
,

where (x)+ denotes max(x, 0).
With probability 1

2 , the algorithm with threshold θ accepts a box, and that gives value at least
1
2θ even if the value of the accepted box is just θ. On top of this, values that are strictly greater
than θ contribute more. That additional contribution in expectation is∑

i

E
[
(vi − θ)+

]
·Pr [box i is looked at] ≥

∑
i

E
[
(vi − θ)+

]
·Pr [no box is taken in the end]

=
1

2

∑
i

E
[
(vi − θ)+

]
≥ 1

2
E
[
(v∗ − θ)+

]
.

Therefore in total the algorithm yields expected value at least 1
2(θ + E[(v∗ − θ)+]).

Remark In lower bounding the contribution from the part (vi − θ)+, we use that the threshold
price is accepted with probability at most 1

2 , whereas in lower bounding the contribution from the
part θ, we used that the threshold price is accepted with probability at least 1

2 . Therefore the
atomless assumption was important. If the condition does not hold, one needs to break ties very
carefully. (How?)

1.2 An Economic Interpretation

If we think of selling a single item to a sequence of bidders, where each bidder i has value vi drawn
independently from distribution Fi, then a threshold algorithm can be seen as the simplest selling
strategy: post a price θ, and sell it to the first buyer i who would like to buy at this price, i.e.,
vi ≥ θ. The problem then asks for a selling strategy so that in expectation the buyer who buys the
item should have a high value. This is known as social welfare maximization in economics.

Under this perspective, θ · Pr[some buyer buys] is the seller’s revenue (or, in other words,
the seller’s utility), whereas

∑
i(vi − θ)+ · Pr[i was considered] is the sum of the buyers’ utilities.

Therefore the calculation we performed above bounds respectively the revenue and the sellers’
utility, and the welfare of a transaction is just the sum of the seller’s revenue and the buyers’
utility!

1.3 Balanced Price Approach

An alternative approach gives the same guarantee but is more robust (without needing to be careful
with tie-breaking, for one thing, and, for another, being in fact also more robust against inaccuracy
in the input distributions). We present the proof using economic terms introduced above.

Consider θ = 1
2 E[maxi vi]. With this posted price θ, let p denote the probability that any buyer
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purchases. Then the seller’s revenue is θp. The buyers’ utilities is∑
i

E
[
(vi − θ)+

]
·Pr [buyer i has an opportunity to purchase]

≥
∑
i

E
[
(vi − θ)+

]
(1− p) ≥ (1− p) E

[
max
i
vi − θ

]
= θ.

Therefore the welfare is at least θ.

1.4 Lower bound

To see the lower bound, consider two boxes; v1 is deterministically 1, and v2 is h with probability
1/h and 0 with probability 1 − 1/h, for some arbitrarily large h. The prophet’s performance on
this instance is 2− 1/h. whereas any online algorithm, by either taking or not taking the first box,
can get no more value than 1.

2 Matroid Prophet Inequalities

Prophet inequalities for matroids were first proved by Kleinberg and Weinberg (2019). We present
the same algorithm with a slightly stronger guarantee against the ex ante optimal. The ex ante ver-
sion was proposed by Lee and Singla (2018), who then used it to give Online Contention Resolution
Schcmes (OCRS, see Section 4 and Feldman et al., 2016).

As before, let [n] be the set of boxes, each box i containing a value vi independently drawn
from distribution Fi. Let M be a matroid on [n], with I the set of independent sets. Boxes arrive
in an adversarial order which is known to the algorithm before hand. (It is important that the
adversary cannot let the arrival order depend on the realized values.) Without loss of generality,
assume the boxes arrive in the order 1, 2, . . . , n. The algorithm upon seeing the value vi in box i
when it arrives, must decide whether to take the box or not, and cannot retract later an accepted
box. At any time the set of boxes accepted by the algorithm must be an independent set of M.
The algorithm aims to maximize the total value in the accepted boxes.

The natural prophet benchmark is E[maxS∈I
∑

i∈S vi]. Let PM be the polytope associated with
the matroid M , the ex ante optimal is defined as:

max
x∈PM

∑
i

E
[
vixi | vi is in the top xi quantile of Fi

]
. (1)

It is easy to see that the ex ante optimal is no less than the prophet benchmark.1 The ex ante
benchmark in general can be strictly greater than the prophet, although the gap is bounded by a
factor of e

e−1 , and is known as the correlation gap (Agrawal et al., 2012).
A threshold algorithm computes, when each box i arrives, a threshold θi, so that box i is accepted

if and only if vi ≥ θi. Two remarks are in order:

• The threshold θi is computed using only information before box i’s arrival, which includes
the observed values v1, . . . , vi−1 and the set of boxes that have been accepted after box i− 1,
which we denote as Ai−1;

1We did not write the conditioning in (1) simply as vi ≥ F−1
i (1 − xi), to avoid discussion of tie-breaking when

there is a probability mass on F−1
i (1− xi).
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• If Ai−1 ∪ {i} /∈ I, then θi should be set as ∞.

Theorem 2. There is a threshold algorithm that collects a total value in expectation at least half
of the ex ante optimal.

Let’s define a correlated distribution on v′ = (v′1, . . . , v
′
n). These random variables are indepen-

dent from v but have the same marginal distributions. Define

x∗ := argmaxx∈PM

∑
i

E
[
vixi | vi is in the top xi quantile of Fi

]
.

Since x∗ ∈ PM, x∗ can be expressed as a convex combination x∗ =
∑

S∈I αS1S , where 1S is the
indicator variable of set S, and

∑
S αS = 1, αS ≥ 0, ∀S. v′ is defined by x∗: first draw x ∈ {0, 1}n,

with probability αS , x = 1S ; then for each i ∈ [n], if xi = 1, v′i is drawn the top x∗i quantile of Fi;
otherwise v′i is drawn from the bottom 1− x∗i quantile of Fi.

Proposition 1. The ex ante optimal is at most E[maxS∈I
∑

i∈S v
′
i].

Proof. Note that {αS}S defines a distribution over independent sets. Let’s denote this distribution
by α, and denote the conditional distribution of v′ given S as FS . Then

Ev′

max
S∈I

∑
i∈S

v′i

 ≥ ES∼α

Ev′∼FS

∑
i∈S

v′i


 = ES∼α

∑
i∈S

vi | vi is in the top x∗i quantile of Fi

 .
By definition of α, when S is drawn from α, with probability precisely x∗i , i is in S. Therefore

the right hand side is just
∑

i E[vix
∗
i | vi is in the top xi quantile of Fi].

This shows an inequality, which suffices for our purpose. In fact one can show that equality
holds, by showing that x∗ can be arrived at by a continuous greedy procedure.

Notations: Let Ai denote the set of boxes accepted by a threshold algorithm after the i-th box,
and A = An the final selection; for any realization of v′i, let B be argmaxB∈I

∑
i∈B v

′
i; then there

must be a partition of B into C and R such that |C| = |A| and A∪R ∈ I; among all such partitions
let R(A) and C(A) be such that

∑
i∈R(A) v

′
i is maximized. Note that A depends only on v, whereas

C(A) and R(A) depend on both v and v′.

Definition 1. A threshold algorithm is said to be α-balanced if for any realizaed v, for any V ⊆ [n]
such that V ∪A ∈ I, the thresholds used by the algorithm satisfy

∑
i∈A

θi ≥
1

α
E

 ∑
i∈C(A)

v′i

 ; (2)

∑
i∈V

θi ≤
(

1− 1

α

)
E

 ∑
i∈R(A)

v′i

 . (3)
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Lemma 3. An α-balanced threshold algorithm obtains expected value at least 1
α fraction of the ex

ante optimal.

Proof. By definition of v′, R(A) and C(A), the ex ante optimal is E[
∑

i∈C(A) v
′
i +
∑

i∈R(A) v
′
i].

By (2),

Ev

∑
i∈A

θi

 ≥ 1

α
Ev,v′

 ∑
i∈C(A)

v′i

 . (4)

With the economic interpretation (see Section 1.2), this part of the value can be seen as the
revenue, and the remaining part is the utility, which we lower bound as follows.

Ev

∑
i∈A

(vi − θi)+

 = Ev

∑
i∈[n]

(vi − θi)+

 = Ev,v′

∑
i∈[n]

(v′i − θi)+

 ≥ Ev,v′

 ∑
i∈R(A)

(v′i − θi)+

 .
The first equality is by definition of a threshold algorithm. The second equality, which is the key
step that generalizes Kleinberg and Weinberg’s original proof, follows from the observations that

(a) θi depends only on v1, . . . , vi−1 but not on vi, nor on v′;

(b) v is independent from v′, and therefore in particular v′i is independent from v1, . . . , vi−1, θi;

(c) v′i has the same marginal distribution as vi.

We can now apply (3) and bound

Ev,v′

 ∑
i∈R(A)

(v′i − θi)+

 ≥ Ev,v′

 ∑
i∈R(A)

(v′i − θi)

 = Ev,v′

 ∑
i∈R(A)

v′i

−Ev,v′

 ∑
i∈R(A)

θi


≥ Ev,v′

 ∑
i∈R(A)

v′i

− (1− 1

α

)
Ev,v′

 ∑
i∈R(A)

v′i

 =
1

α
Ev,v′

 ∑
i∈R(A)

v′i

 .
(5)

The lemma follows by summing up (4) and (5)

It remains to construct a 2-balanced threshold algorithm. This part is identical to Kleinberg
and Weinberg’s original one.

Define f : I → R+ as f(S) := E[
∑

i∈R(S) v
′
i].

Lemma 4. The threshold algorithm with the following thresholds is 2-balanced: for each box i, if
Ai−1 ∪ {i} /∈ I, let θ be ∞; otherwise θi := 1

2(f(Ai−1)− f(Ai−1 ∪ {i})).
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Proof. We check the two properties of 2-balancedness. For any v, number the items in A as
a1, . . . , ak, and let a0 be 0, then

∑
i∈A

θi =
1

2

k∑
j=1

f(Aaj−1)− f(Aaj ) =
1

2

[
f(A0)− f(Aak)

]
=

1

2

[
f(∅)− f(A)

]
=

1

2
E

 ∑
i∈C(A)

v′i

 .
It is elementary to show that f(·) is submodular (or refer to Kleinberg and Weinberg, 2019 for

a rigorous proof). For any V ⊆ [n] such that A ∪ V ∈ I, let the elements in V be a1, . . . , ak, let
Wj be A ∪ {a1, . . . , aj} for j = 1, · · · , k, and W0 = A, then

∑
i∈V

θi ≤
1

2

∑
i∈V

(f(A)− f(A ∪ {i})) ≤ 1

2

k∑
j=1

(f(Wj−1)− f(Wj)) =
1

2
f(A).

3 Pandora Box Problem

In the Pandora Box problem, we again have n boxes, each box i containing a hidden value vi drawn
independently from a known distribution Fi. Again, we are allowed to pick only one box. Instead
of having the boxes arriving in an adversary order, we can choose the order in which to open the
box; also, we are allowed to retrieve a box which we opened and temporarily decided not to take
immediately. On each box i, there is also a cost ci ≥ 0: so in order to open box i, we must first pay
a cost ci. The Pandora Box problem asks for an algorithm that, given this information, decides on
a procedure that maximizes the expected utility, which is the value in the box we take minus all
the search costs we pay along the way. We are not allowed to take a box we did not open.

3.1 The index algorithm

For each box i, with its distribution Fi and search cost ci, if we were also offered another box which
deterministically contains a value v, how large should v be so that we are indifferent between (a)
opening box i first and then deciding which one to take, and (b) skipping box i and directly taking
the deterministic value?

The break-even value v is such that the expected additional value we obtain from opening box i
covers exactly the cost of opening it, i.e., Evi [(vi − v)+] = ci. There is a unique solution to this
equation. Let θi denote this solution, and call it the index of box i.

The index algorithm uses the following procedure: Initialize by writing on each box its index.
Remove all boxes with negative indices. Among the remaining ones, open the box with the highest
index, and replace the index written on it by the value contained in it. If at any point the largest
number written on a box is a value (instead of an index), take that box and quit; otherwise open
a box with the currently highest index (breaking ties arbitrarily).

3.2 Optimality of the index algorithm

Theorem 5. Among all procedures, the index algorithm has the highest expected utility.
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Proof. Consider any algorithm. For each box i, let Ii be the indicator variable for the event that
the algorithm opens box i, and Ai be the indicator variable for the event that the algorithm takes
box i. Then the algorithm’s expected utility is

∑
i E[Aivi−ciIi]. Recall that ci = Ev′i∼Fi

[(vi−θi)+].
So

Ev [Aivi − ciIi] = Ev

[
Aivi −Ev′i∼Fi

[
(v′i − θi)+

]
· Ii
]

= Ev

[
Aivi − (vi − θi)+ · Ii

]
.

Replacing v′i by vi is crucial and subtle. They are from the distribution, but note that Ii depends
on v. The crucial observation is that Ii is independent from vi — whether an algorithm opens box i
cannot be affected by what is actually contained in it. Now we upper bound the expected utility
of the algorithm, using the fact that Ai ≤ Ii:∑

i

E [Aivi − ciIi] =
∑
i

E
[
Aivi − (vi − θi)+ · Ii

]
≤
∑
i

E
[
Aivi − (vi − θi)+ ·Ai

]
=
∑
i

E
[
Ai ·min(vi, θi)

]
.

Since for any realization of v, we have
∑

iAi ≤ 1, so we have

∑
i

E
[
min(vi, θi)

]
≤ E

[
max
i

min(vi, θi)

]
.

We argue that the index algorithm achieves exactly this upper bound. In this line of derivation,
there are two inequalities. The first inequality would be tight if the algorithm satisfies the following
property: whenever it opens a box and sees a value greater than the index written on the box, the
algorithm must take it. The index algorithm does satisfy this property. The second inequality is
satisfied if the box chosen by the algorithm always maximizes min(vi, θi). The index algorithm also
satisfies this.

3.3 Generalization of Pandora Box Problem: Price of Information

It is natural to generalize the Pandora Box Problem to a variety of combinatorial optimization
problems (Singla, 2018). Given a set of feasible sets F ⊆ 2[n], distributions F1, · · · , Fn and search
costs c1, . . . , cn, we are allowed to query any unopened box i at cost ci and observe value vi ∼ Fi.
At any point, we may take a subset T of opened boxes, with T ∈ F . We are to maximize the
expected total value of boxes we take minus the total search costs of boxes we open.

The basic Pandora Box algorithm then is the special case when F is the set of all singleton sets
plus the empty set.

Exercise 1. Give an optimal algorithm when F is the set of independent sets of a matroid.

Exercise 2. Given a feasibility system F ⊆ 2[n] with weights w1, . . . , wn ≥ 0. Consider the problem
of maximizing the max weight feasible set: maxT∈F

∑
i∈T wi. If the Greedy algorithm guarantees

1
α -approximation for the problem for α ≤ 1, describe an algorithm that guarantees 1

α -approximation
for the Pandora box problem defined on F .

The greedy algorithm initializes T = ∅, then iterates until no element can be added to T : let
i ∈ argmaxj:T∪{j}∈F vj , T ← T ∪ {i}.
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4 Online Contention Resolution Schemes

Online Contention Resolution Schemes (OCRS) are closely related to Prophet Inequalities and Pan-
dora Box Problem. We first give basic definitions and examples, and then describe the connections.

4.1 Definitions

Given a set [n] of elements and a set of feasible sets F ⊆ 2[n], we consider the convex hull of the
indicator vectors of the feasible sets: PF := Conv({1S}S∈F ) ⊆ [0, 1][n]. F is usually downward
closed, i.e., S ∈ F , T ⊆ S ⇒ T ∈ F .

We are given a point x = (x1, . . . , xn) ∈ PF . Each element i ∈ [n] is active with probability xi,
independently from the other elements. Elements arrive one by one. When element i arrives, we
get to observe whether it is active, and if it is, must decide immediately whether to select it into the
solution. Once an element is selected, we cannot retract it. The solution set must remain feasible
at all time. Our algorithm is said to be an α-selectable OCRS if each i, conditioning on its being
active, is selected with probability at least α.

There are usually two arrival orders we consider. In the random order model, the elements
arrive in an order that is uniformly at random, as in the secretary problem. OCRS in this model is
often abbreviated as RCRS (R for “random”). In the adversarial order model, the elements arrive
in an order that is prespecified, which may depend on x. In the adversarial order model, it makes
a difference whether the adversary knows the realization of the elements’ statuses. The adversary
is sometimes said to be almighty if he has access to this information. In these notes, we assume
the adversary has no such information.

4.2 Basic Examples

In this section we consider perhaps the simplest, nontrivial feasible sets, where F contains all the
singleton sets and the empty set. PF is simply ∆([n]), the simplex on [n]. Note that in this setting
we can accept at most one element.

Example 1. A 1
4 -selectable OCRS in the adversarial order setting. Start with the solution set

T = ∅. Whenever we see an active element i and T is empty, select i.

Proof. Each element i, conditioning on its being active, is selected with probability half times the
probability with which T is empty before we see i. Let Ej denote the event that element j is
accepted. Then

Pr
[
T = ∅ when i arrives

]
≥ 1−Pr

[
∪j 6=iEj

]
= 1−

∑
j 6=i

Pr
[
Ej
]
≥ 1−

∑
j 6=i

xj
2
≥ 1

2
.

The equality is an application of the union bound; since the events E1, · · · , En are disjoint, equality
is attained here. The second inequality comes from the bound Pr[Ej ] ≤ xj

2 .
Therefore with probability at least 1

4 , element i is accepted whenever it is active.

Example 2. A 1
2 -selectable OCRS in the adversarial order setting: when element i arrives and

is active, if the algorithm has selected no other element, let yi be the probability with which the
algorithm has not selected anything before i arrives, and select i with probability 1

2yi
.
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Proof. It suffices to show yi ≥ 1
2 for every i. We show this by an induction. Without loss of

generality, assume the elements arrive in the order 1, 2, . . . , n. When element 1 arrives, y1 = 1.
Now suppose y1, . . . , yi−1 ≥ 1

2 . Let Ej denote the event that element j is active and selected. Then
Pr[Ej ] = xj/2.

yi = 1−
i−1∑
j=1

Pr
[
Ej
]

= 1−
i−1∑
j=1

xj
2
≥ 1

2
.

The second equality is again an application of the union bound on disjoint events.

Example 3 (Lee and Singla, 2018). A (1− 1
e )-selectable RCRS: one way of realizing a uniformly

random order is to let each element i independently draw a time ti from [0, 1] uniformly at random,
and then let element i arrive at time ti. Our algorithm, when seeing element i active, selects i with
probability e−tixi if it has not taken an element.

Proof. We again lower bound the probability with which the algorithm can still accept element i
when it arrives at time ti:

Pr [no element has been selected when element i arrives at time ti]

≥
∏
j 6=i

(
1− xj

∫ ti

0
e−sxj ds

)
=
∏
j 6=i

(
1− (1− e−tixj )

)
= e−

∑
j 6=i tixj .

Therefore, when active, element i is selected with probability at least∫ 1

0
e−txi · e−t

∑
j 6=i xj dt ≥

∫ 1

0
e−t dt = 1− 1

e
.

Exercise 3. Show that, for any ε > 0, for large enough n there exists no (1 − 1
e + ε)-selectable

OCRS in random arrival order.

4.3 Connections with Prophet Inequalities

The prophet inequality problem is naturally defined on a general feasbility system: given F ⊆ 2[n],
and distributions F1, · · · , Fn, as box i arrives, vi ∼ Fi is revealed, and we must decide immediately
whether to select the box to the solution. At all time, the set of selected boxes must be feasible.
Let T denote the set of boxes selected by the algorithm. An algorithm is α-competitive if

E

∑
i∈T

vi

 ≥ αE

max
S∈F

∑
i∈S

vi

 .
Theorem 6. If for a feasibility system F there is an α-selectable OCRS against a certain arrival
model, then there is a prophet inequality algorithm that is α-competitive in the same arrival model.
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Proof. For every v, fix an OPT(v) ∈ argmaxT∈F
∑

i∈T vi. Let x∗i be Prv[i ∈ OPT(v)]. Then
x∗ ∈ PF . Feed x∗ as the input to the given OCRS algorithm. Run the prophet inequality problem
as follows. When item i arrives, we observe vi, and then for every box j 6= i, resample v′j ∼ Fj
independently. If i ∈ OPT(vi,v

′
−i), then tell the OCRS algorithm that element i is active; otherwise

tell it is not active. Select box i if and only if the OCRS algorithm selects element i.
The feasibility of the set of selected boxes is guaranteed by the feasibility of the OCRS algo-

rithm’s output. The contribution of box i to the prophet inequality algorithm is

Evi

[
vi Prv′−i

[
i is selected | i is active

]
·Prv′−i

[i is active]
]

≥αEvi

[
vi Prv′−i

[
i ∈ OPT(vi,v

′
−i)
]]

=αEvi

[
vi Prv−i

[
i ∈ OPT(v)

]]
,

The claim is proved by summing over the boxes.

Exercise 4. Show that an α-selectable OCRS in fact implies a prophet inequality algorithm that
is α-competitive against the ex ante optimal,

In fact, the reverse of the exercise is true. We omit the proof here.

Theorem 7 (Lee and Singla, 2018). If for a feasibility system F there is an prophet inequality
algorithm that is α-competitive against the ex ante optimal in a certain arrival model, then there is
an OCRS algorithm that is α-selectable in the same arrival model.

Corollary 1. For any matroid, there is a 1
2 -selectable OCRS algorithm in adversarial arrival order.

Proof of Theorem 7. Any valid, deterministic online contention resolution scheme is fully described
by its behavior for every i and S ⊆ [n]: when element i arrives and turns out active, given that
S is the set of elements already selected, does the algorithm select i or not? Therefore the set of
deterministic schemes is finite, and we index them by λ. Given x, denote by aλi the probability
with which the algorithm indexed by λ selects element i. Any ORCS is a randomization over
deterministic OCRS. Let (yλ)λ denote a distribution over deterministic OCRS; then the problem
of finding an optimal OCRS is solved by the following linear program:

max
γ,y

γ

s.t.
∑
λ

yλa
λ
i ≥ xiγ, ∀i ∈ [n];∑

λ

yλ = 1;

yλ ≥ 0, ∀λ.
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The dual of the program is:

min
β,z

β

s.t.
∑
i

zia
λ
i ≤ β, ∀λ;∑

i

xizi = 1;

zi ≥ 0, ∀i.

For any z1, . . . , zn ≥ 0, think of each item i as a box in a prophet inequality problem, with value
vi that is zi with probaiblity xi, and 0 otherwise. The constraint

∑
i xizi = 1 now normalizes to 1

the ex ante optimal of this prophet inequality problem. A key observation is that any deterministic
prophet inequality algorithm in this context is translated to an OCRS: Element i is active if and
only if vi is zi; without loss of generality, a prophet inequality algorithm only takes a box i when
vi = zi, in which case we say the algorithm, as an OCRS, selects element i. Therefore the set
of deterministic prophet inequality algorithms is the same as the set of OCRS. If there exists an
prophet inequality that is α-competitive against the ex ante optimal, the objective of the dual
program is at least α. By the strong duality theorem, the objective of the primal program is also
at least α, and hence there is a α-selectable OCRS.

Remark 1. This proof only shows the implication of good deterministic ex-ante prophet inequali-
ties to avoid discussing strong duality in the presence of infinitely many variables/constraints. The
argument generalizes to randomized algorithms; we omit the technical details here.

If an ex-ante prophet inequality algorithm runs in polynomial time, it can be used as a separation
oracle to compute an α−ε-selectable OCRS in time polynomial in n and 1

ε . We also omit the details
here.

5 OCRS and Pandora Box problem on Bipartite Matchings

We now consider one of the simplest feasibility system beyond matroids: bipartite matchings. Given
a bipartite graph G = (U, V,E), the universe is now E, and F is the set of all matchings in G.

5.1 OCRS on Bipartite Matchings

Theorem 8 (Ezra et al., 2020). There is a 1
3 -selectable OCRS algorithm for bipartite matchings,

in the adversarial arrival order.

Proof. We are given x in the matching polytope. The analysis resembles that of Example 2. When
edge e = (u, v) arrives, let ye denote the probability with which neither u nor v has been matched
by then. If e is active and both u and v are unmatched, the algorithm selects e with probability
1/3ye. We only need to show ye ≥ 1/3 for all e, as then the algorithm is well defined; each edge,
when active, is then selected with probability precisely 1/3.

Again we show this by induction. For the first edge, this is obviously true. Now consider an
arbitrary edge e = (u, v). Let p(u, e) denote the set of edges incident to u that arrive before e;
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and p(v, e) the set of edges incident to v that arrive before e. By induction hypothesis, any edge
f ∈ p(u, e) ∪ p(v, e) is selected with probability precisely xf/3. Therefore by the union bound,

ye ≥ 1−
∑

f∈p(u,e)

xf
3
−

∑
f∈p(v,e)

xf
3
≥ 1− 1

3
− 1

3
=

1

3
.

The second inequality uses the fact that x is in the matching polytope.

Corollary 2 (Gravin and Wang, 2019). There is a 1
3 -competitive prophet inequality algorithm for

bipartite matchings, in the adversarial arrival order.

In fact, better OCRS algorithms exist, even for general, non-bipartite graphs. Interested readers
are referred to Ezra et al. (2020).

Theorem 9 (Ezra et al., 2020). There is a 0.337-selectable OCRS on matchings of a general graph
(not necessarily bipartite) in the adversarial arrival order.

5.2 Pandora Box Problem on Bipartite Matchings

From Exercise 2, we obtain a 2-approximation algorithm for the Pandora box problem for matchings
in general graphs. To obtain better than 2-approximations, more non-trivial ideas are needed. We
here describe a e

e−1 -approximation due to Gamlath et al. (2019).

Theorem 10. For arbitrary ε > 0, there is a e+ε
e−1 -approximation algorithm, running in time

poly(|E|, 1ε ), for the Pandora box problem on bipartite matchings.
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