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These notes introduces the solution concepts of correlated equilibria and coarse correalted equi-
libria in the context of no-regret learning dynamics played in games, and then present the black-box
reduction from external to swap regret, a result due to Blum and Mansour (2007).

1 Correlated and Coarse Correlated Equilibria

We have seen that, when the two players both use no-regret learning algorithms in a zero-sum game,
their time-average strategies converge to a Nash equilibrium, and this constitutes an alternative
proof of von Neumann’s minimax theorem. It is natural to ask what happens in games that are
more general.

Consider an n-player game with action spaces A1, · · · , An and each player i’s utility given by
ui(~a) for action profile ~a. Without loss of generality, assume Ai − [k] for each i. Suppose at each
round each player i uses a no-regret learning algorithm and uses (randomized) strategy sit at time
step t. Let s̃it be the time average strategy up to time step t, i.e., s̃it =

∑t
τ=1 s

i
t. (Recall that each

sit is a k-dimensional vector in ∆([k]).)
The no-regret learning algorithm guarantess that, up to time T , for each player i and each

deviation a ∈ Ai,

1

T

T∑
t=1

ui(s
i
t, s
−i
t ) ≥ 1

T

T∑
t=1

ui(a, s
−i
t )− ε(T ) = ui(a, s̃

−i
T )− ε(T ),

where ε(T ) goes to 0 as T grows. We emphasize that the LHS, 1
T

∑T
t=1 ui(s

i
t, s
−i
t ), is not equal to

ui(s̃
i
T , s̃
−i
T ). If it were, then (s̃iT )i would constitute an approximate Nash equilibrium, which is the

case for two-player zero-sum games. ui(s̃
i
T , s̃
−i
T ) is the expected (of player i) when all players play

their randomized strategies independently, but in the expression 1
T

∑T
t=1 ui(s

i
t, s
−i
t ), the utility is

evaluated by first drawing a time step t and then all players play their time t strategy independently;
therefore, overall their actions are correlated by the shared time step.

This suggests a solution concept where players’ strategies are correlated, possibly by some
external device or mediator, in which no party has a beneficial unilateral deviation.

Definition 1. A joint distribution s ∈ ∆(
∏
iAi) is a coarse correlated Nash equilibrium if for each

player i and each deviation a ∈ Ai,

Ea∼s
[
ui(ai,a−i)

]
≥ Ea∼s

[
ui(a,a−i)

]
.
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For ε > 0, a joint distribution s ∈ ∆(
∏
iAi) is an ε-approximate coarse correlated Nash equilibrium

if for each player i and each deviation a ∈ Ai,

Ea∼s
[
ui(ai,a−i)

]
≥ Ea∼s

[
ui(a,a−i)

]
− ε.

The discussion above immediately yields the following observation:

Proposition 1. In a n-player game where ui ∈ [0, 1], if all players use no-regret learning algo-
rithms that guarantee an average regret ε(T ) after time T , then the distribution DT defined as
follows constitutes an ε(T )-approximate coarse correlated Nash equilibrium after time T : first draw
t uniformly at random from [T ] = 1, · · · , T , then for each i draw action ai according to sit, where sit
is the strategy played by player i at time step t, according to the no-regret learning algorithm. As
T grows, any convergent subsequence of {DT } (which must exist) converges to a coarse correlated
Nash equilibrium.

The qualification “coarse” refers to the fact that the deviation is rather restricted: in deliber-
ating a possible unilateral deviation, a player considers only one fixed action no matter what the
correlating device or mediator tells the player. It is natural to consider the following stronger type
of deviations: whenver the correlating device tells me that I should play action a, I play some a′

instead, where a′ may depend on what a is. In other words, a deviation is a mapping from an
action to an action, and a joint distribution over actions should be stable only when no unilaterally
beneficial mapping exists. The following stronger soltuion concept captures this idea.

Definition 2. A joint distribution s ∈ ∆(
∏
iAi) is a correlated Nash equilibrium if for each player i

and each deviation mapping ϕ : Ai → Ai,

Ea∼s
[
ui(ai,a−i)

]
≥ Ea∼s

[
ui(ϕ(ai),a−i)

]
.

Similarly, for ε > 0, a joint distribution s ∈ ∆(
∏
iAi) is an ε-approximate coarse correlated Nash

equilibrium if for each player i and each deviation mapping ϕ : Ai → Ai,

Ea∼s
[
ui(ai,a−i)

]
≥ Ea∼s

[
ui(ϕ(ai),a−i)

]
− ε.

Exercise 1. Show that every correlated Nash is a Nash, and every coarse correlated Nash is a
correlated Nash.

The “diminishing regret” property of no-regret learning algorithms give rise to convergence to
coarse correlated Nash, but not to the stronger solution concept of correalted Nash. It has been
shown that other dynamics, which bear resemlance to no-regret learning but with some different
designs, could guarantee convergence to correlated Nash (e.g. Foster and Vohra, 1993; Fudenberg
and Levine, 1999; Hart and Mas-Colell, 2000). In the next section we will present a reduction due
to Blum and Mansour (2007), which takes any no-regret learning algorithm as a black-box and
uses it to design a stronger online learning algorithm whose time-average strategies converge to
correlated Nash equilibria.

2 Black-Box Reduction from External Regret to Swap Regret

Suppose we run a certain online algorithms for each player in a repeated game. We’d like that after
T time steps, the time-average strategies of the players constitute a ε(T )-approximate correlated
Nash equilibrium, for ε(T ) that tends to 0 and T grows. Let’s first see more clearly what property
this would require from the algorithm we use.
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Definition 3. In an online learning problem where the loss of action i ∈ [k] at time step t is `t(i)
and an algorithm is required to output a distribution st over actions at time step t with knowledge
of `1, · · · , `t−1, the swap regret of an algorithm after time step T is

sup
`1,··· ,`T ,ϕ:[k]→[k]

T∑
t=1

k∑
i=1

st(i)[`t(i)− `t(ϕ(i))]. (1)

The regret we have studied so far is called the external regret. Equivalently, it can be similarly
defined as in (1) with ϕ being restricted to being a constant function.

With an argument similar to that for Proposition 1, we can see that algorithms that guarantee
low swap regret converge to correlated Nash equilibria.

Proposition 2. In a n-player game where ui ∈ [0, 1], if all players use algorithms that guarantee
an average swap regret ε(T ) after time T , then the distribution DT defined as follows constitutes
an ε(T )-approximate correlated Nash equilibrium after time T : first draw t uniformly at random
from [T ] = 1, · · · , T , then for each i draw action ai according to sit, where sit is the strategy played
by player i at time step t, according to the algorithm. As T grows, any convergent subsequence of
{DT } (which must exist) converges to a correlated Nash equilibrium.

Theorem 1 (Blum and Mansour, 2007). For the expert setting with k actions, given any online
learning algorithm A that guarantees an external regret of no more than R(T ) after T time steps,
there is a polynomial-time algorithm which invokes A and guarantees a swap regret of no more than
kR(T ) after time step T .

This is a black-box reduction because the algorithm guaranteed only invokes A without opening
the box, i.e., without having to know how A works.

Corollary 1. If all the players in a game with k actions for each player use the algorithm in
Theorem 1 by feeding the Hedge algorithm to the black-box reduction, then after time T , the joint
distribution as described in Proposition 1 constitutes an O( 1

k
√
T log k

)-approximate correlated Nash

equilibrium.

Intuitively, we would ideally run k copies of the no-regret learning algorithm, one for each of
the actions, such that whenever action i is played, we use the i-th algorithm to make sure that
the regret with respect to any other fixed action is no more than R(T ). But this is almost self-
contradictory — the algorithm corresponding to action i, by virtue of being no-regret, must output
a distribution over actions, and therefore it can not be that we use that algorithm precisely when
we play action i. The key idea is that we only need to guarantee that with the same probability
we take action i and use the algorithm corresponding to action i. How is this possible? At each
step t, each of these k no-regret learning algorithm outputs a distribution over actions; if we choose
a distribution yt over these algorithms (and therefore their outputs) such that the resulting overall
distribution over the actions happens to be the same as yt then we “happen to” be doing the right
thing. We formalize the idea below.

Proof of Theorem 1. Let A1, · · · ,Ak be k copies of the given no-regret learning algorithm. At each
time step t, we will determine on a distribution yt ∈ ∆([k]) and run Ai with probabilty yt(i); that
is, if Ai outputs strategy sit ∈ ∆([k]), then we use strategy zt =

∑
i yt(i)s

i
t for time step t. Then,

after observing the losses `t(i) for each action i, we feed Ai with the loss vector yt(i)`t.
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The no-regret property of algorithm Ai gives us that, for any j ∈ [k],

T∑
t=1

〈sit, yt(i)`t〉 − `t(j)yt(i) =

T∑
t=1

yt(i)[〈sit, `t〉 − `t(j)] ≤ R(T ),

where 〈·, ·〉 denotes the inner product. Summing them up, we have that, for any mapping ϕ : [k]→
[k],

kR(T ) ≥
T∑
t=1

∑
i

yt(i)[〈sit, `t〉 − `t(ϕ(i))] =
T∑
t=1

k∑
i=1

zt(i)`t(i)− yt(i)`t(ϕ(i)). (2)

Recall that at time step t, we play action i with probability zt(i). Comparing (2) with (1), we
see that if we could make yt(i) = zt(i) for all i, then (2) says exactly that the swap regret of
our algorithm would be bounded by kR(T ). Therefore yt should be the solution to the linear
system

∑
i yt(i)s

i
t = yt. Recall that yt needs to be a probability distribution. Note that the

matrix [s1t , . . . , s
k
t ] encodes a Markov chain, with sit(j) representing the probability with which

state i transits to state j. Viewed this way,
∑

i yt(i)s
i
t is the state distribution when we start with

distribution yt and let the chain move one step. Requiring this to be equal to yt is to require yt to
be a stationary distribution for the Markov chain. It is well known that this always exists.
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