
Optimal Auctions with Correlated Bidders are Easy

Shahar Dobzinski
Department of Computer Science

Cornell Unversity
shahar@cs.cornell.edu

Hu Fu
Department of Computer Science

Cornell Unversity
hufu@cs.cornell.edu

Robert Kleinberg
Department of Computer Science

Cornell Unversity
rdk@cs.cornell.edu

April 15, 2011

Abstract
We consider the problem of designing a revenue-maximizing auction for a single item, when

the values of the bidders are drawn from a correlated distribution. We observe that there exists
an algorithm that finds the optimal randomized mechanism that runs in time polynomial in the
size of the support. We leverage this result to show that in the oracle model introduced by
Ronen and Saberi [FOCS’02], there exists a polynomial time truthful in expectation mechanism
that provides a (1.5 + ε)-approximation to the revenue achievable by an optimal truthful-in-
expectation mechanism, and a polynomial time deterministic truthful mechanism that guarantees
5
3 approximation to the revenue achievable by an optimal deterministic truthful mechanism.

We show that the 5
3 -approximation mechanism provides the same approximation ratio also

with respect to the optimal truthful-in-expectation mechanism. This shows that the performance
gap between truthful-in-expectation and deterministic mechanisms is relatively small. En route,
we solve an open question of Mehta and Vazirani [EC’04].

Finally, we extend some of our results to the multi-item case, and show how to compute the
optimal truthful-in-expectation mechanisms for bidders with more complex valuations.

1 Introduction

Myerson, in his seminal paper [11], studies the following problem: n bidders are competing on a
single item , and each bidder’s value for the item is drawn independently from a distribution. What
is the optimal revenue-maximizing auction? Myerson gives a complete and simple characterization
of the optimal auctions. A natural open question raised by this work is to analyze the case when the
bidders’ values are drawn from a general (correlated) distribution. That question is the topic of this
paper.

Naturally, the problem has been heavily studied in economics. Usually, the economics approach
involved attempts to characterize restricted special cases. See [7] for a survey. One notable exception
was given by Cremer and McLean [6], who show that sometimes an auction that extracts the full
social welfare exists. However, the proposed solution works only for a restricted class of distributions.
More severely, although each bidder’s expected gain from participating in the mechanism is zero, it
is common for a bidder to be charged an amount greatly exceeding her value. This is unrealistic in
many settings.1

1For example, even if a bidder is risk neutral, she may not have a budget to cover a payment many times her bid.
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Ronen [14] offers a thought-provoking alternative to the economics approach: instead of strug-
gling to find an exact characterization of optimal auctions – even though a simple characterization
probably does not exist in the case of correlated distributions – we should design auctions that are
approximately optimal. Ronen presents the following elegant truthful mechanism, the lookahead auc-
tion, that provides in expectation at least half of the revenue of the optimal auction. First, find the
n− 1 bidders with the lowest values. Given their values, consider the conditional distribution of the
value vi of bidder i with the highest valuation, and calculate a price p that maximizes the expected
revenue. If vi ≥ p, bidder i is assigned the item and is charged p, otherwise no one is assigned the
item and no one pays anything.

We continue the line of research of studying approximately optimal auctions. In particular, we
investigate the following three research directions.

Research Direction I: Obtaining Better Approximation Ratios

Perhaps the first question every theoretical computer scientist would ask following Ronen’s paper is:
“Are there mechanisms with better approximation ratios?” To answer this question we have to be
more explicit about the computational model in hand. Ronen and Saberi [15] introduce the oracle
model : the distribution is given to us as a black box and we are allowed to ask conditional-distribution
queries. That is, given the values of n−k players, what is the conditional distribution of the values of
the remaining k players? Ronen and Saberi prove several hardness results in this model, in particular
that no ascending auction can guarantee a 4

3 -approximation. The other model is the explicit model,
where the running time has to be polynomial in the support size of the distribution. Papadimitriou
and Pierrakos [13] prove that it is possible to exactly compute the optimal deterministic auction for
2 bidders, but NP-hard to do so for more bidders.

Research Direction II: Relaxing the Solution Concept

This paper considers three extensively studied notions of truthfulness. The simplest and strongest
one is dominant strategy truthfulness (or deterministic truthfulness): a profit-maximizing strategy of
each bidder is to reveal his true value. The second notion is randomized universal truthfulness: here
a mechanism is a probability distribution over deterministic truthful mechanisms. The third notion
is that of truthfulness in expectation: revealing the true value maximizes the expected profit of each
bidder, where the expectation is taken over the internal random coins of the mechanism.

Myerson [11] shows that the optimal auction is always deterministic when bids are independent,
even if truthfulness in expectation is allowed2. We pose the following question: can truthful-in-
expectation mechanisms achieve more revenue than deterministic mechanisms when the distribution
is correlated? If so, how much more? Notice that this question is of interest both as a pure existence
question and when computational efficient is taken into consideration. Both issues were studied in [3]
in a different setting.

Research Direction III: Beyond Single-Item Auctions

Naturally, we would like to design revenue-maximizing auctions also for more complicated settings.
The direct characterization approach of economists was successful so far only in limited settings
— for example, Armstrong [1] characterizes optimal auctions for two items and two bidders with
additive valuations, where each bidder has only two possible values for each item and the valuations
are independently distributed — while the approximation approach of computer scientists was mostly

2In fact, he proves that this is true even under the weaker notion of Bayesian truthfulness (see [12] for a definition).
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successful when either considering the weak solution concept of Bayesian truthfulness [2]3 or studying
the revenue of certain restricted families of mechanisms [4], both with independent valuations.

Our Results

Our paper contributes to all three directions sketched above while drawing connections between them.
The starting point of our investigations is one, quite simple, observation: in the explicit model the
optimal truthful-in-expectation auction can be computed in polynomial time. This auction can be
found by solving a natural linear program4 that encodes allocation probabilities, expected payments,
and the incentive constraints that link them. Unlike the mechanism of Cremer and McLean [6],
ours never charges agents an amount greater than their bid value, a property shared by all of the
mechanisms we construct in this paper.

Unfortunately, while the explicit model might be useful for settings with a small number of players,
for large numbers of players the distribution usually has exponentially large support, e.g. when each
player has two possible values and valuations are independent. We overcome this obstacle by reducing
the optimal auction design problem for any number of players to the problem of designing optimal
auctions for a constant number of players, for which the LP-based approach is feasible. Consider
the following extension of the lookahead auction, termed the k-lookahead auction. Find the n − k
bidders with the lowest values. Given their values, consider the conditional distribution of the values
of the k bidders with the highest valuations, and run the optimal auction for these k bidders5. We
show that this auction is a 3k−1

2k−1 -approximation to the optimal revenue6. In particular, this proves
that there exists a polynomial time (1.5 + ε)-approximation truthful-in-expectation mechanism in the
oracle model.

Next, we proceed to consider deterministic truthful mechanisms. We show the following general
“derandomization” result: for every truthful-in-expectation mechanism for 2 bidders and a single
item, there exists a universally truthful mechanism with the same allocation function and the same
payments in expectation. In other words, relaxing the solution concept to truthfulness in expectation
is useless, as every mechanism (in the above setting) can be implemented using the stronger notion
of universal truthfulness.

This result has several implications. First: for two players, the optimal deterministic mechanism
has the same revenue as the optimal truthful-in-expectation mechanism, and can be found in polyno-
mial time. We achieve this by computing an optimal truthful-in-expectation mechanism A for two
bidders using the LP approach, and then “derandomizing” it into a universally truthful algorithm
A′ with the same expected revenue. Now, since all (deterministic) mechanisms in the support of A′

must have the same expected revenue with respect to the distribution (otherwise A′ is not optimal),
every one of them is an optimal revenue-maximizing deterministic mechanism. Prior to our work,
a different polynomial-time algorithm for computing two-player optimal deterministic mechanisms,
without the derandomization result, was obtained by Papadimitriou and Pierrakos [13].

Another implication is that the 2-lookahead auction is in fact deterministic, even if truthfulness-
in-expectation is allowed. Combining this with the approximation ratio of 2-lookahead auctions, we
obtain the result that there exists a deterministic polynomial time truthful mechanism in the oracle

3Notice that in our setting we do not even assume the bidders are aware of the existence of an underlying distribution.
4Although some caution is needed as we have to define the mechanism for all possible values in the domain, not just

for values in the support of the distribution.
5This auction may be either deterministic or truthful-in-expectation, depending on the setting.
6Ronen [14] claims that the approximation ratio of the k-lookahead auction is no better than 2, for every k, but his

proof is incorrect. He essentially claims (without a proof) that all truthful mechanisms achieve an expected revenue
of at most 1 for a certain distribution for 2 bidders. However, the pivot auction we define in Section 5 provides an
expected revenue of 1.5 for that distribution.
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model that guarantees 3
5 -fraction of the revenue of the optimal truthful-in-expectation mechanism,

and, as a corollary, that for every truthful-in-expectation mechanism with an expected revenue of r,
there exists a deterministic mechanism with expected revenue of at least 3

5r.
We stress that our derandomization result holds regardless of the objective function and even in

the prior free setting. We complement this result by showing that if each player has only two possible
values for the item (“low” and “high”) then the mechanism can be implemented as a universally
truthful mechanism, for any number of players. On the other hand, there is a 3-bidder 3-values
truthful-in-expectation mechanism that cannot be implemented as a universally truthful algorithm.
Together, this answers an open question of Mehta and Vazirani [10].

Extensions Beyond Single-Item Auctions We show that our linear programming technique
extends to yield optimal truthful-in-expectation mechanisms, that are computationally efficient in
the explicit model, for a number of settings beyond single-item auctions. First, we generalize to ar-
bitrary single-parameter domains, showing that our linear program constitutes an efficient reduction
from revenue maximization to social welfare maximization, in the explicit model when bidders have
correlated types.

Next, we show that our technique also extends to certain multi-parameter domains: unit-demand
valuations and additive valuations, again yielding computationally efficient optimal truthful-in-expectation
mechanisms with correlated valuations in the explicit model. The key to these results lies in “decom-
posing” the fractional solution as a convex combination of integer solutions. For the additive case
we present a direct decomposition, while for the unit demand case we use the classical Birkhoff-von
Neumann Theorem. We complement these positive results with a negative one: it is NP-hard to
design optimal truthful-in-expectation mechanisms for bidders with OXS valuations, in contrast to
the social welfare maximization problem which is computationally easy for this class of valuations [8].

Open Questions

While this paper studies several old questions, it also raises some new ones. Let us mention a few.
In the single-item auction setting, what is the best approximation ratio that can be obtained in
polynomial time by deterministic mechanisms? And by truthful-in-expectation mechanisms? We
know the answer only for truthful-in-expectation mechanisms in the explicit model, and have gaps in
all other cases. The key for a solution might be a better analysis of the k-lookahead auction. Our best
lower bound on the approximation ratio of the k-lookahead auction is k+1

k . Does the approximation
ratio of the k-lookahead auction approach 1 as k grows? We suspect that it does not, but have been
unable to prove it7.

Another question is to understand how well deterministic mechanisms perform compared to their
truthful-in-expectation counterparts. We showed that the ratio is at most 5

3 . We also present an
example demonstrating that the ratio is at least 1.001 (Section 7). Quantifying the gap essentially
boils down to the purely combinatorial problem of analyzing the integrality gap of our linear program.

We provided conditions in which truthful-in-expectation mechanisms can be implemented as
universally truthful mechanisms. Can this be extended to other single-parameter settings, such as
scheduling on related machines?

The multi-item setting also has plenty of questions to offer. We showed that for additive and
unit demand valuations the optimal truthful-in-expectation mechanism can be efficiently computed
in the explicit model, but that it is hard to do so for the more general OXS class. Can we design
truthful mechanisms with a good approximation ratio for the OXS class, and for the richer gross
substitutes class? The question is of interest also in the oracle model. Also, to what extent do

7There has been recent progress on the approximation power of the k-lookahead auctions [5].
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truthful-in-expectation mechanisms outperform deterministic mechanisms in these settings, ignoring
computational issues?

Finally, it would be very interesting to study other ways of specifying the type distribution in
both the single and multi item settings. Specifically, in what cases can good approximations be
obtained in polynomial time, if we are only given black-box access to samples from the distribution?

2 Preliminaries

The Single-Item Setting

We have one item and n bidders, where bidder i has a privately known value vi ≥ 0. We assume
some distribution D on the values of bidders. We allow the distribution of different bidders’ values
to be correlated. A mechanism M takes a bid vector v and returns an allocation and a price for each
bidder. We use M(v) = (x1, x2, . . . , xn) to denote the allocation vector. In randomized mechanisms,
we allow allocations to be fractions. For example, M(v)i = xi is the probability with which bidder i
gets the item when the bid vector is v. Alternatively, we say bidder i gets a M(v)i fraction of the
item. When the mechanism is deterministic, each xi has to be 0 or 1. We require that

∑
i xi ≤ 1

in any allocation vector. This condition is called the feasibility of M . In single-parameter domains,
the feasibility condition is generalized by stipulating that M(v) must lie in a specified set of feasible
vectors or, in the case of randomized mechanisms, the convex hull of the feasible vectors. When
bidder i’s bid is vi and he gets a fraction xi of the item, the expected payment he makes is required
to be at most vixi. This is the individual rationality (IR) condition. Throughout this paper, our
mechanisms have the additional property that with any outcome of the random coins, the payment
made by the bidder who gets the item is at most his bid. Our goal is to maximize the total expected
payment (the revenue) of the bidders, where expectation is taken over D.

The valuations of all bidders but bidder i are denoted by v−i. Fix v−i. An auction (equivalently,
a mechanism) is called truthful if for every vi, v

′
i, we have xi · vi − pi ≥ x′i · vi − p′i. Here xi, pi (resp.

x′i, p
′
i) denote the allocation and expected payment when bidder i declares a value of vi (resp. v′i).

Note that when xi and x′i can be fractions, the two sides of the inequality are the expected profits
of bidder i if he bids vi and v′i, respectively. Therefore the mechanism can be called truthful in
expectation: truthful for bidders that maximize their expected profits. A mechanism is universally
truthful if it is a probability distribution over deterministic truthful mechanisms. Notice that the
distribution D is not involved in our definitions of truthfulness, i.e., our mechanisms are truthful for
all possible values, not just values in the support of D. In particular, observe that bidders do not
need to have any knowledge of D, or any other common prior.

For a distribution D and a mechanism M , let ED[M ] denote the revenue of M . A mechanism
M is called an α-approximation if ED[OPT ]

ED[M ] ≤ α, where OPT is the revenue-maximizing truthful
mechanism given D. (OPT might be truthful or truthful in expectation, depending on the setting.)

To determine the running time of the mechanism, we use two different models. In the explicit
model we get an explicit list of every type in the support of D and its probability. The auction should
run in time polynomial in n and the support size of D. In the oracle model, introduced by Ronen
and Saberi [15], the distribution is represented by an oracle that can answer the following type of
queries8: Pr[a1 = v1, . . . , an = vn], which may include conditional distribution queries. In this model
the running time should be polynomial in n and in the combined support size of the players’ marginal
distributions (i.e., the quantity Σi #{vi | ∃v−i such that (vi, v−i) ∈ support(D)}). We assume that
the support of each marginal distribution is known to the mechanism in advance.

8The oracle used in this paper is strictly weaker than the oracle of [15]. Since our interest in the oracle model lies
in designing efficient algorithms, this only strengthen our result.
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Multi-Item Settings

In the last part of the paper we discuss multi-item issues. Here we have m items and n bidders,
where bidder i has a valuation function vi that gives a non-negative value for each bundle S of items.
We will consider several restrictions on the valuation functions, but we define them in the relevant
sections. The definitions from the single item case extend naturally: each bidder i is assigned a
bundle Si (or, in the randomized case, a distribution over bundles) and charged pi, where pi = 0 in
case Si is the empty bundle. We assume a distribution. As before, we want to maximize the expected
revenue.

A mechanism is truthful if each bidder maximizes his profit by revealing his true valuation, and is
truthful-in-expectation if revealing his true valuation maximizes his expected profit. The definition
of approximation ratio extends naturally. In this paper, for multi-item settings we are interested only
in the explicit model, where the support of the distribution is explicitly enumerated. The running
time of mechanisms should be polynomial in m, n, and the size of the support.

3 An Optimal Truthful in Expectation Mechanism

In this section we show that the optimal truthful in expectation mechanism can be computed in time
polynomial in the size of the distribution D (the explicit model). We leverage this result later when in
Section 5 we analyze the approximation ratio of the k-lookahead auction. To make the k-lookahead
auction computationally efficient, the construction of this section is involved as a subroutine. As
a consequence of Section 4 we have that the optimal truthful-in-expectation mechanism for two
bidders is deterministic. Finally, in Section 6 we extend this construction to several more complicated
domains.

The result of this section is based on writing a natural linear program for the problem. We have
to be careful when interpreting the linear program as a truthful mechanism, as the mechanism has
to be defined over all possible bid vectors, not just those in the support of D. Towards this end,
we will need some notation and definitions. Let Di = {vi | ~v ∈ D}. We assume that for every
i, 0 ∈ Di. This is without loss of generality since we may assume that PrD[(0, ~v−i)] = 0. Let
T = {(di, v−i) | ∃i, di ∈ Di and v−i ∈ D−i}. Observe that |T | ≤ n · |D|2.

• Solve the following linear program:

Maximize:
∑

~v∈D PrD[~v]
∑

i pi,~v

Subject to:

– For each ~v ∈ T :
∑

i xi,~v ≤ 1.

– For each bidder i, ~v ∈ T , v′i ∈ Di: xi,~v · vi − pi,~v ≥ xi,(v′i,~v−i) · vi − pi,(v′i,~v−i).

– For each i, ~v ∈ T : xi,~v ≥ 0, pi,~v ≥ 0.

– For each i, ~v−i ∈ T : pi,(0,~v−i) = 0.

• Let ~v = v1, . . . , vn be the (realized) valuations of the bidders. The allocation and payments are
determined according to the following cases:

1. If ~v ∈ D, then allocate the item to exactly one bidder, where each bidder i receives the
item with probability xi,~v. Let the payment of the winning bidder i be pi,~v

xi,~v
. The other

bidders pay 0.
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2. If ~v /∈ D, every bidder i for which ~v−i /∈ D−i is not allocated the item and does not
pay anything. For each bidder i for which ~v−i ∈ D−i, let v′i = arg maxv′i∈Di

xi,(v′i,~v−i) ·
vi − pi,(v′i,~v−i). Each such bidder i receives the item with probability xi,(v′i,~v−i) and pays
pi,(v′

i
,~v−i)

xi,(v′
i
,~v−i)

contingent upon receiving the item.

Theorem 3.1 The mechanism is feasible, individually rational, truthful in expectation, and runs in
time polynomial in the size of the distribution D. Its expected revenue is equal to the expected revenue
of the optimal (individually rational) truthful in expectation mechanism for D.

The proof consists of the following lemmas.

Lemma 3.2 The algorithm is feasible, individually rational and truthful in expectation.

Proof: To see that the algorithm is feasible, consider the following cases:

• ~v ∈ D: feasibility from the LP constraints.

• ~v /∈ T : bidder i may receive the item only if ~v−i ∈ D−i. By definition of T this can happen
only if vi /∈ Di, which implies that for every other bidder j, ~v−j /∈ D−j , thus only bidder i may
receive the item.

• ~v ∈ T (and ~v /∈ D): again, bidder i may receive the item only if ~v−i ∈ D−i. In that case v′i = vi,
because the second set of constraints in the LP guarantees that the argmax in the definition of
v′i is actually equal to vi. Now, feasibility is again guaranteed by the first set of constraints.

To see that the algorithm is individually rational, assume that bidder i wins the item and that
his payment is pi,~v

xi,~v
. By the constraints of the LP we have that xi,~v · vi − pi,~v ≥ 0, since (0, ~v−i) ∈ D.

Hence vi ≥ pi,~v

xi,~v
as needed.

We now show that the algorithm is truthful in expectation. Consider bidder i. If ~v−i /∈ D−i,
bidder i never receives the item regardless of his value vi. Hence assume that ~v−i ∈ Di. Bidder i
wins the item with probability xi,~v and his payment in this case is pi,~v

xi,~v
. Thus the expected profit of

bidder i when he declares his true value is xi,~v · vi − pi,~v. We now show that the profit of i is not
bigger when he declares any other value v′i. We assume that ~v ∈ T : otherwise by the definition of
the algorithm, bidder i is facing several alternatives whose prices do not depend on i’s value, and he
is to take the most profitable one; in this case truthfulness is obvious.

When (v′i, ~v−i) ∈ T . As before, the profit of bidder i is xi,(v′i,~v−i) ·vi−pi,(v′i,~v−i). By the constraints
of the LP we have that xi,~v · vi − pi,~v ≥ xi,(v′i,~v−i) · vi − pi,(v′i,~v−i), as needed.

When (v′i, ~v−i) /∈ T . Let w be arg maxv′i∈Vi
xi,(v′i,~v−i) ·v′i−pi,(v′i,~v−i). The profit of i when declaring

v′i is xi,(w,~v−i) · vi − pi,(w,~v−i) which is at most, by the constraints of the LP, his profit from declaring
his true value vi (i.e., xi,~v · vi − pi,~v).

The following lemma is straightforward, since the size of the LP is polynomial in the size of T ,
which is polynomial in the size of D:

Lemma 3.3 The algorithm runs in time polynomial in the size of D.

Lemma 3.4 The expected revenue of the algorithm (over D) equals the optimal value of the linear
program. In addition, the optimal value of the linear program equals the revenue of the optimal
(individually rational) truthful in expectation mechanism.
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Proof: Given that the valuation profile is ~v ∈ D, the expected payment from each bidder i is
xi,~v · pi,~v

xi,~v
= pi,~v. Thus the expected revenue of the algorithm (where the expectation is taken over D)

is exactly the optimal value of the linear program:
∑

~v∈D PrD[~v]
∑

i p~v.
We now prove the second statement. Consider the revenue maximizing, individually rational,

truthful in expectation mechanism for D. Set the variables of the linear program: for each ~v ∈ T ,
set xi,~v be the probability that i receives the item given that the valuation profile is ~v, and let pi,~v

be his expected payment in case the valuation profile is ~v. Notice that the linear program is feasible
(the item is allocated to only one bidder so

∑
i xi,~v ≤ 1) and that the expected revenue equals the

objective function of the linear program.

4 Deterministic vs. Truthful in Expectation Mechanisms

In this section, we show that for every two-bidder truthful-in-expectation mechanism M , there exists
a universally truthful mechanism M ′ with “the same” behavior. In other words, for two-bidder single
item auctions, relaxing the solution concept from universal truthfulness to truthfulness in expectation
is useless: every allocation function that is implementable by a truthful-in-expectation mechanism is
also implementable by a universally truthful mechanism.

Definition 4.1 A mechanism M ′ implements another mechanism M if, for every bid vector and
every bidder i, M ′ allocates the item to i with the same probability and at the same expected price as
M .

Notice that if M ′ implements M , then the two mechanisms have the same expected revenue. We
show that for two bidders, for every truthful-in-expectation mechanism M , there is a universally
truthful mechanism that implements it. We would also like to show that this can be done efficiently.
We assume that M is represented by an oracle:

Definition 4.2 Let R1
v be {(x, p) | ∃u s.t. M(v, u)1 = (x, p)}, and R2

u be {(x, p) | ∃v s.t. M(v, u)2 =
(x, p)}. In other words, R1

v is player 1’s price-outcome menu when he bids v, and R2
u is player 2’s

price-outcome menu when he bids u. An alternative oracle gets as input the value v of bidder i and
returns R3−i

v .

Theorem 4.3 If M is a truthful-in-expectation ex-post IR mechanism for two bidders single-item
auctions, then there exists a universally truthful ex-post IR mechanism M ′ that implements M .
Moreover, if M is represented by an alternative oracle then M ′ can be found in time that is polynomial
in maxi,v |Ri

v|.

The proof, presented in Sections 4.1 and 4.2, is constructive, and it presents an algorithm that
takes a truthful-in-expectation mechanism M as input and outputs a universally truthful mechanism
M ′ that implements M . The algorithm is efficient as long as the alternative oracle can be efficiently
implemented. In particular we get that:

Corollary 4.4 There is an algorithm that finds a 2-bidder optimal deterministic truthful mechanism
for single-item auctions in time polynomial in the size of the support of the distribution.

Proof: In the previous section we showed that an optimal truthful-in-expectation mechanism M
can be found in time polynomial in the size of the support of the distribution. Since alternative oracle
queries can be answered in time polynomial in the size of the support of the mechanism, Theorem 4.3
guarantees that we can find a universally truthful mechanism M ′ that implements M in polynomial
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time. Finally, M ′ is a distribution over deterministic mechanisms that achieves an optimal revenue
(in expectation). Thus, every mechanism in the support of M obtains that revenue, in particular the
one that sets all the random coins to, say, 0.

This amounts to a re-derivation of a result in [13]. However, we would like to stress that the
applicability of our result is not limited to revenue maximization. For example, Vincent and Manelli
show the following:

Theorem 4.5 [9] Let M be a Bayesian truthful mechanism with independent distributions. Then
there is a truthful in expectation mechanism that implements9 M .

Therefore, by [9] and Theorem 4.3, we have the following theorem:

Theorem 4.6 Let M be a two-bidder Bayesian truthful mechanism with independent distributions.
Then there is a universally truthful mechanism that implements M .

Furthermore, we show the following result that together with the algorithm answers an open
question of Mehta and Vazirani [10]. (Proofs for Theorem 4.7 and Proposition 4.8, which are non-
trivial, appear in the full version of the paper.)

Theorem 4.7 Every truthful-in-expectation mechanism for n bidders where each bidder has only
two possible values can be implemented as a universally truthful mechanism. However, there exists a
truthful-in-expectation mechanism for three bidders where each bidder has three possible values that
cannot be implemented as a universally truthful mechanism.

Proof: Let bidder i’s two values be `i and hi, with `i < hi. We construct a graph G whose nodes
are all possible bid vectors, i.e., each node v is labeled (αi)i, where αi is from {`i, hi}. There is an
edge between two nodes if their labels differ in exactly one coordinate. We then add some dummy
nodes to G: for each node v = (αi)i where |{i | αi = hi}| = k, add k dummy nodes and identify each
one with bidder i for which αi = hi in v. Add an edge between v and each of the dummy nodes.
These dummy nodes have no other edges, and therefore have degree 1. Observe that G is a bipartite
graph.

We will show that every integral matchings in G corresponds to a truthful deterministic mecha-
nisms. Furthermore, we will show that a fractional matching corresponds to a truthful-in-expectation
mechanisms. The theorem will then follow since it is known that a fractional matching can be ”de-
composed” to a probability distribution over integral matchings in a bipartite graph (see below).

Observe that every matching M in G corresponds to a deterministic truthful mechanism: for
each bid vector, consider the corresponding node in G. If it is not matched to any other node, then
allocate nothing; if it is matched to a dummy node, then allocate the item to bidder i if the dummy
node corresponds to i (bidder i’s value must be hi in this case); otherwise, v is matched to a node
corresponding to v′, then allocate the item to bidder i where i is the coordinate where v and v′

differs. The mechanism is feasible. To check truthfulness we show that the algorithm is monotone:
if bidder i’s value is `i in v and i gets the item, then v is matched to v′ and the two differ only in
coordinate i; therefore, if, all other bids fixed, his value changes to hi, he still gets the item.

The next observation we make is that any truthful-in-expectation mechanism M corresponds to
a fractional matching in G in a similar way. Suppose at bid vector v, M allocates a fraction x of
the item to bidder i. Let v′ be the bid vector that differs from v only at coordinate i and suppose

9A truthful-in-expectation mechanism M ′ implements a Bayesian truthful mechanism M (when the distribution
is D) if, for every each bidder i and vi ∈ Di, the probability with which bidder i gets the item when he bids vi in M is
exactly the same as that in M ′, i.e.,

∑
v−i:(vi,v−i)∈D M ′(vi, v−i)i.

9



M allocates fraction y of the item to i at v′. If vi is `i, then add x fraction of the edge (v, v′)
to the fractional matching. Otherwise add x − y fraction of the edge from v to the dummy node
corresponding to the hi in v. We are guaranteed that x − y is nonnegative by the monotonicity of
M . We also know that the total weight of all edges incident to a node does not exceed 1 by the
feasibility of M . Hence we get a fractional matching on G.

We note that the correspondences described in the preceding two paragraphs are inverse to each
other. In other words, given any matching M in G, if we first map it to the corresponding deter-
ministic truthful mechanism, and then map the mechanism back as a matching in G, then we get M
back. Therefore, we have established a one-to-one correspondence between all deterministic truthful
mechanisms and all matchings in G. Furthermore, this correspondence is “linear”, in the sense that
if a fractional matching in G corresponds to a TIE mechanism M and can be expressed as a convex
combination of a set of matchings in G, then M can be expressed as the convex combination of the
deterministic truthful mechanisms corresponding to these matchings, with the same linear coeffi-
cients. Expressing a TIE mechanism as a convex combination of deterministic truthful mechanisms,
however, is exactly what we mean by implementing a TIE mechanism using universally truthful
mechanism. The problem then boils down to decomposing a fractional matching in a bipartite graph
as a convex combination of matchings on the same graph — Theorem 6.7 and Lemma 6.8 say exactly
that this can always be done, which concludes the proof.

Back to designing optimal auctions, we also show an explicit distribution with small support
size, for which the best truthful-in-expectation mechanism performs better than the best determin-
istic mechanism. This distribution builds upon the construction in the proof of the second half of
Theorem 4.7 (see Section 7 for a proof).

Proposition 4.8 There exists a distribution D for three bidders, with each bidder having only four
possible values in the support, for which the optimal truthful-in-expectation mechanism achieves
strictly more revenue than any deterministic mechanism.

4.1 The Algorithm

For the rest of the discussion in this subsection we fix a truthful in expectation mechanism M . In
this presentation of the algorithm we assume Ri

v contains finitely many elements. We extend it in
Section 4.2 to a procedure for constructing a universally truthful mechanism that implements M,
even when the sets Ri

v are infinite.
Observe that by truthfulness, if (xi, pi) ∈ Ri

v−i
, then (xi, p̂i) /∈ Ri

v−i
, for every p 6= p̂. (This is

because if xi’s price for bidder i should not depend on his bid when the other bid is fixed.) Hence
we define a total order on the elements of Ri

v−i
: (xi, pi) > (x̂i, p̂i) if and only if xi > x̂i. We can

therefore sort the elements in Rv−i in the increasing order, so that (xi
1, p

i
1) < (xi

2, p
i
2) < . . . < (xi

`, p
i
`).

If xi
` < 1, then we add (xi

`+1,∞) to Ri
v−i

. If (0, 0) is not in Ri
v−i

, then add (xi
0 = 0, pi

0 = 0) to Ri
v−i

.
Note that by individual rationality, pi

0 must be 0.
The main idea of the algorithm is to set a take-it-or-leave-it offer to each bidder where the price

of the offer is obtained by randomly “simulating” Myerson’s payment formula [11]. The novelty of
the proof is in showing that these offers can be coordinated in the following sense: when one bidder
accepts the offer, the other one will reject it. We present the algorithm as follows. We note that it
is obvious the algorithm runs in time polynomial in maxi,v |Ri

v|.

1. Sample r ∈ [0, 1] uniformly at random.

2. Elicit a bid from each bidder. Let the bids be (v1, v2).

10



3. For each bidder i, i ∈ {1, 2}:
(a) Consider Ri

v−i
= {(xi

k, p
i
k) | xi

k < xi
k+1,∀k}. Label points in each interval (xi

k, x
i
k+1] ⊆

[0, 1] with
pi

k+1−pi
k

xi
k+1−xi

k
.

(b) If i = 1, let p be the label of the point r. If i = 2, let p be the label of the point 1− r.
(c) If i = 1, allocate the item to bidder i only if r ≤ M(v1, v2)i. If i = 2, allocate the item to

bidder i only if 1− r < M(v1, v2)i. If the bidder is allocated the item then his payment is
p.

4.2 Correctness of the Algorithm

The proof consists of the following claims.

Claim 4.9 For each bidder i, the labels of the interval [0, 1] are increasing. Moreover, suppose that
bidder i with valuation vi is assigned a fraction x of the item in M , then all labels in [0, x] are at
most vi, and all labels in (x, 1] are at least vi.

Proof: By definition of Ri
v−i

, x is equal to xi
k for some k. The expected price for bidder i in M

is therefore pi
k. Let v′i be such that M(v′i, v−i) = xi

k−1, and let the expected price in this case be
p′ik . Let v′′i be such that M(v′′i , v−i) = xi

k+1, and the expected price in this case be p′ik . From the
definition of truthfulness, we have:

vi · xi
k − pi

k ≥ vi · xi
k+1 − pi

k+1, vi · xi
k − pi

k ≥ vi · xi
k−1 − pi

k−1.

Rearranging the inequalities, we get:

pi
k+1 − pi

k

xi
k+1 − xi

k

≥ vi ≥
pi

k − pi
k−1

xi
k − xi

k−1

.

The claim follows by inductively applying the claim for each two consecutive intervals.

Claim 4.10 The mechanism M ′ the algorithm produces is universally truthful.

Proof: Observe that after choosing r, M ′ elicits bids, and then makes an allocation decision and
a take-it-or-leave-it offer for each bidder, where the price for bidder i does not depend on bidder
i’s valuation but only on v−i and r (by Claim 4.9 if bidder i is assigned the item then vi − p ≥ 0,
otherwise vi−p ≤ 0). Notice that when a bidder has a zero profit from taking the item we can break
ties arbitrarily without affecting truthfulness. Hence, for each r the algorithm is truthful. Since we
choose r in a way that is independent of the bids, M ′ is a universally truthful mechanism.

The next two claims show that indeed M ′ implements M and that M ′ never allocates more than
one item.

Claim 4.11 M ′ implements M.

Proof: Suppose that bidder i with value vi is assigned x and his payment is p in M . By definition
(x, p) is equal to some (xi

k, p
i
k) ∈ Ri

v−i
. In the algorithm, it is easy to see that the probability that

bidder i is assigned the item is exactly x. The expected payment of bidder i is:

pi
1

xi
1

· xi
1 +

pi
2 − pi

1

xi
2 − xi

1

· (xi
2 − xi

1) + · · ·

+
pi

k − pi
k−1

xi
k − xi

k−1

· (xi
k − xi

k−1) = pk
i = p.
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Claim 4.12 M ′ is feasible.

Proof: Given valuations (v1, v2), suppose that M assigns fractions x and y to the two bidders,
respectively, then by the feasibility of M , x + y ≤ 1. Therefore, bidder 2 is assigned the item exactly
when 1 − r ≤ y, i.e., r ≥ 1 − y ≥ x, which is the condition that bidder 1 is not assigned the item.
This guarantees the feasibility of M ′.

We have proved the correctness of the algorithm in Section 4.1. Now we extend it to a procedure
for the case when Ri

v−i
’s can be infinite.

Similarly to the algorithm presented in Section 4.1, the mechanism first chooses a number r ∈ [0, 1]
uniformly at random. For every value of r, we have a deterministic mechanism as follows:

1. Elicit a bid from each bidder. Let the bids be (v1, v2).

2. If r ≤ M(v1, v2)1, allocate the item to bidder 1; if 1 − r < M(v1, v2)2, allocate the item to
bidder 2.

3. By the characterization of individually rational truthful mechanisms in this setting, the payment
of the bidder who gets the item is determined by the monotone allocation rule specified in the
last step — if bidder 1 gets the item, he makes the payment inf{v1 | M(v1, v2)1 > r}; if bidder 2
gets the item, he makes the payment inf{v2 | M(v1, v2)2 > 1− r}.

By similar arguments as in the previous claims, for every value of r this deterministic mechanism
is truthful and feasible. We therefore obtain a distribution over deterministic truthful mechanisms,
i.e., a universally truthful mechanism. This mechanism implements the allocation rule of M , and by
the uniqueness of payment scheme for individually rational truthful mechanisms, the payment of M
is implemented as well.

We note that the algorithm presented in Section 4.1 for the finite case is a special case of the
procedure presented above. We presented it in an apparently different way simply to make the
algorithm more explicit and to make it clear that its running time is polynomially bounded in that
case.

This completes the proof of Theorem 4.3.
We further remark that for a truthful-in-expectation mechanism M that is not IR and pi

0 is not 0,
we can still find a universally truthful mechanism that implements it. We simply change the labels

to be
pi

k+1+pi
0−pi

k

xi
k+1−xi

k
, and the rest of the argument (except Claim 4.9 in its exact form) goes through.

5 The Approximation Ratio of the k-Lookahead Auction

In this section we analyze the k-lookahead auction which is defined as follows. Find the k bidders
with the highest values, and denote this set of bidders by K. Run the revenue-maximizing truthful
auction for K conditioned on the values of bidders in N \ K. Notice that the auction for K can
either be the optimal truthful-in-expectation mechanism or the optimal deterministic mechanism.

Theorem 5.1 The k-lookahead auction gives approximation ratio of at least 3k−1
2k−1 . In particular, for

k = 2 the approximation ratio is at least 5
3 , and the approximation ratio tends to 3

2 as k tends to ∞.
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We remark that if the auction for K is allowed to be truthful-in-expectation, then the approxima-
tion ratio is with respect to the optimal truthful-in-expectation mechanism10. Taking into account
the result of Section 3 we get that:

Corollary 5.2 The k-lookahead auction gives a 3k−1
2k−1 -approximation to the revenue of the optimal

mechanism that is truthful in expectation. The auction runs in polynomial time in the oracle model.

Our derandomization result for 2-bidder auctions (Section 4) gives us that:

Corollary 5.3 The 2-lookahead auction provides a 5
3 -approximation to the revenue of the optimal

mechanism that is truthful in expectation. The 2-lookahead auction is deterministic in this case and
runs in polynomial time in the oracle model.

In particular this implies a bounded ratio between the revenue of the optimal truthful-in-expectation
mechanism and that of the optimal deterministic mechanism for n-bidder single-item auctions in
general:

Corollary 5.4 If a truthful-in-expectation mechanism for a single item with distribution D can
achieve revenue r, then there is a deterministic mechanism for a single item and distribution D
with revenue at least 3r

5 .

5.1 Analysis of the k-Lookahead Auction

Denote the original distribution by D, and denote the conditional distribution of the values of the
bidders in K given the values of bidders in N \K by DK . We let vk+1 denote the the value of the
(k+1)th-highest bidder. We show that one of the following three families of auctions provides a good
approximation ratio. The k-lookahead auction obviously provides at least as much expected revenue,
and the theorem follows. The auctions are defined for k ≥ 2. The second and third auctions depend
on a parameter t ≥ 1, to be specified later.

1. k-Highest Auction: Run the optimal auction. If one of the bidders in N \K is assigned the
item in the optimal auction, no bidder is assigned the item and no one is charged anything. If
one of the bidders in K is assigned the item in the revenue-maximizing auction then assign him
the item and charge him as in the revenue-maximizing auction, or vk+1, whichever is larger.

2. t-Fixed Price Auction: Select one bidder (“the reserve bidder”) from K uniformly at ran-
dom, denote this bidder by i. If any of the bidders in K \ {i} has value above t · vk+1 then
he receives the item and pays t · vk+1. If there are several such bidders, break ties arbitrarily.
Otherwise, the reserve bidder gets the item and pays vk+1.

3. t-Pivot Auction: Select one bidder (“the pivot”) from K uniformly at random, and denote
this bidder by i. If any of the bidders of in K \{i} has value above t ·vk+1 then run the revenue
maximizing auction for bidders in K, conditioned on the values of bidders in N \K. Otherwise
the pivot bidder gets the item and pays vk+1.

It is straightforward to see that the k-Highest Auction and the t-Fixed Price Auction are truthful
and individually rational11. To see that the t-Pivot Auction is truthful we observe that this auction

10Similarly, if the auction for K is allowed to be Bayesian truthful, then the approximation ratio is with respect to
the optimal Bayesian truthful mechanism.

11If the optimal auctions used by the k-Highest Auction and the t-Pivot Auction are deterministic or universally
truthful, then all three auctions are universally truthful, as is their convex combination. In this case our proof shows

that there is a deterministic auction on the k highest bidders that achieves a
(

3k−1
2k−1

)
-approximation to the deterministic

optimal auction.
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is monotone: the only non-straightforward case to check is when bidder i raises his value and forces
the mechanism to run the optimal auction. However, in this case bidder i was not allocated the item
before raising his value, so monotonicity is preserved.
Proof: (of Theorem 5.1) Let l be the event where no bidder in K has value at least t · vk+1, and let
l be the complement of this event. We partition the expected revenue of the optimal auction:

• let Ll be the expected revenue from bidders in N \K from instances where event l occurs.

• let Ll be the expected revenue from bidders in N \K from instances where event l occurs.

• Let M be the expected revenue from bidders in K from instances where event l occurs.

• Let H be the expected revenue from bidders in K from instances where event l occurs.

Observe that the expected revenue of the optimal auction is Ll + Ll + H + M . We continue by
proving several lemmas.

Lemma 5.5 The expected revenue of the k-Highest Auction is at least M + H.

Proof: By definition the auction extracts exactly the same revenue as the optimal auction from
bidders in K and no revenue from bidders in N \K. The lemma follows.

Lemma 5.6 The expected revenue of the t-Fixed Price Auction is at least Ll + M
t + k−1

k ·t ·Ll +
1
k ·Ll.

Proof: First, notice that the revenue of the t-Fixed Price Auction in every instance is at least
vk+1 (either the reserve bidder is allocated the item and pays vk+1 or the auction sells the item at
a higher price). Suppose that event l occurs. This case contributes Ll + M to the expected revenue
of the optimal auction. Observe that, if l occurs, in any instance where the optimal auction sells
the item to bidders in N \K, its revenue is at most vk+1 (the price for a sold item is at most the
value of the bidder), and that in any instance the optimal auction sells the item to bidders in N \K
the revenue is at most t · vk+1. Thus, the instances where event l occurs contribute Ll + M

t to the
expected revenue of the t-Fixed Price Auction.

Suppose now that event l occurs. Thus, there exists some bidder b with vb > t · vk+1. With
probability exactly k−1

k , b is not the reserve bidder and in this case the revenue of the auction is
t · vk+1. With probability 1

k we have that b is the reserve bidder and the revenue of the auction is
at least vk+1. In particular, for every instance where the optimal auction sells the item to bidders
in N \K (at a price of at most vk+1) the t-Fixed Price Auction has an expected revenue of at least
k−1

k · t ·Ll +
1
k ·Ll. Together with the contribution from instances where event l occurs we have that

the expected revenue of the auction is at least Ll + M
t + k−1

k · t · Ll + 1
k · Ll.

Lemma 5.7 The expected revenue of the t-Pivot Auction, conditioned on the values of bidders in
K, is at least Ll + M

t + k−1
k H + 1

kLl.

Proof: Suppose that event l occurs. The revenue of the t-Pivot Auction in every instance where l
occurs is vk+1. The expected revenue of the optimal auction in this case is Ll + M , and similarly to
the the analysis of the t-Fixed Price Auction the expected contribution to the revenue from instances
where event l occurs is Ll + M

t .
Suppose that event l occurs. Thus, there exists some bidder b with vb > t ·vk+1. With probability

exactly k−1
k , b is not the reserve bidder and in this case the revenue of the auction is at least H.

With probability 1
k we have that b is the reserve bidder and the revenue of the auction is at least

1
k · vk+1. Again, similarly to the analysis of the t-Fixed Price Auction the expected contribution to
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the revenue when the event l occurs is k−1
k H + 1

kLl. Overall, the expected revenue of the auction is
at least Ll + M

t + k−1
k H + 1

kLl.
Next we need some definitions. Conditioned on the values of bidders in N \K, let OPT be the

revenue of the revenue-maximizing auction, Rh be the revenue of the k-Highest Auction, Rf be the
expected revenue of the t-Fixed Price Auction, Rp the expected revenue of the t-Pivot Auction and
R = max(Rf , Rp). In addition, for the rest of the proof we fix t = 2k−1

k−1 .

Lemma 5.8 R ≥ Ll + Ll + H+M
t .

Proof: We divide the analysis into two cases. Suppose first that Ll · t ≥ H, which implies that
k−1

k · (t− 1) · Ll = Ll ≥ H
t by our choice of t. We have that:

Rf ≥ Ll +
M

t
+

k − 1
k

· t · Ll +
1
k
· Ll

≥ Ll +
M

t
+ Ll +

k − 1
k

· (t− 1) · Ll

≥ Ll + Ll +
H + M

t

The other case that we still have to handle is when it holds that Ll · t < H.

Rp ≥ Ll +
M

t
+

k − 1
k

·H +
1
k
· Ll

≥ Ll +
M

t
+

H

t
+

k2 − 2k + 1
k(2k − 1)

·H +
1
k
· Ll

> Ll +
M

t
+

H

t
+

k − 1
k

· Ll +
1
k
· Ll

= Ll + Ll +
H + M

t

We are now finally able to analyze the ratio between the expected ratio of the revenue-maximizing
auction and the k-lookahead auction. We consider two cases and show that in each one the expected
ratio is at most 2− 1

t = 3k−1
2k−1 . In the first case we assume that Ll +Ll ≤ (H +M)(1− 1

t ). Therefore,

OPT

Rh
≤ Ll + Ll + H + M

H + M

≤ (H + M)(1− 1
t ) + H + M

H + M
= 2− 1

t

Now assume that Ll + Ll > (H + M)(1− 1
t ). We have that, using Lemma 5.8:

OPT

R
≤ Ll + Ll + H + M

Ll + Ll + H+M
t

<
(H + M)(1− 1

t ) + H + M

(H + M)(1− 1
t ) + H+M

t

= 2− 1
t
.
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6 Extensions of Our Techniques

In this section, we extend our techniques presented in Section 3 to more general settings.

6.1 Single Parameter Domains

In this section, we show that in some single-dimensional settings the problem of designing revenue
maximizing truthful-in-expectation mechanisms can be reduced to finding an outcome that maximizes
the social welfare.

Definition 6.1 In a single-dimensional setting, each bidder i’s type is represented by a real num-
ber vi, and for each outcome ω ∈ Ω, there is a constant αi,ω such that bidder i’s valuation for ω is
vi · αi,ω.

A combinatorial auction with known single-minded bidders is an example of the single-dimensional
setting.

Theorem 6.2 In a single-dimensional setting, if there is an oracle that solves the social welfare
maximization problem, then one can compute in polynomial time a revenue maximizing, truthful-in-
expectation, ex-post IR mechanism in the explicit model.

Proof: In a single-dimensional setting, the type of bidders can be represented by a vector v, where
vi represents bidder i’s type. Let D be the support of the type distribution, and denote by PrD(v)
the probability of v occurring. Let D−i be {v−i | v ∈ D}, Ti be {vi | ∃v−i s.t. (vi,v−i) ∈ D}, and T
be ∪iTi.

For any randomized mechanism, given a bidding vector v, it will output outcome ω with proba-
bility xv,ω, and charge bidder i an expected price pi,v.

By a similar argument as that in Section 3, we can solve the optimal mechanism design problem
if we could solve the following linear program:

• Maximize:
∑

v∈D PrD(v)
∑

i pi,v

• Subject to:

– ∀v ∈ D:
∑

ω∈Ω xv,ω ≤ 1.
– ∀i,∀v ∈ D, ∀v′i ∈ Ti:

vi

∑

ω∈Ω

αi,ωxv,ω − pi,v

≥ vi

∑

ω∈Ω

αi,ωx(v′i,v−i),ω − pi,(v′i,v−i)

– ∀i,∀v−i ∈ D−i, pi,(0,v−i) = 0.
– ∀ω ∈ Ω,∀v ∈ D, xv,ω ≥ 0.
– ∀i,∀v ∈ D, pi,v ≥ 0.

If we can optimally solve the LP, we can run a mechanism that outputs ω∗ at a bid vector v with
probability xv,ω∗ , and charges bidder i a payment of pi,v · xv,ω∗αi,ω∗∑

ω∈Ω xv,ωαi,ω
. 12

Since Ω can be exponentially large, the LP above may involve exponentially many variables, but
it has only polynomially many constraints. Writing out its dual, we get

12As we will show below, the LP can be solved in polynomial time using the ellipsoid method, therefore the sum in
the denominator has only polynomially many nonzero entries, and hence can be computed efficiently.
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• Minimize:
∑

v γv.

• Subject to:

– ∀v ∈ T ,∀ω ∈ Ω,

∑
i αi,ω

∑
v′i∈Ti\{vi}

(
v′iyi,(v′i,v−i),vi

− viyi,v,v′i

)

≥ −γv

– ∀i,∀v ∈ T , v′i ∈ Ti \ {vi}, yi,v,v′i ≥ 0.

– ∀v ∈ T , γv ≥ 0.

If there is a separation oracle, we can solve the dual. Since there are only polynomially many
constraints in the second group, it suffices to give a separation oracle for the first group of constraints.
But there are only polynomially many v ∈ D, and the problem boils down to the following: given
any v ∈ D and γv, is there an ω ∈ Ω such that

∑

i

αi,ω

∑

v′i∈Ti\{vi}

(
viyi,v,v′i − v′iyi,(v′i,v−i),vi

)
> γv.

This problem can be solved by an oracle that, given a bid vector, outputs an outcome that
maximizes the social welfare — feed the oracle with a bidding vector where bidder i’s type is∑

v′i∈Ti\{vi}
(
viyi,v,v′i − v′iyi,(v′i,v−i),vi

)
, and the left hand side becomes the social welfare of outcome ω.

If the ω that the oracle returns has social welfare at most γv, then no constraint for this v is violated,
otherwise we find a violated constraint. This completes the proof.

6.2 Multi-Parameter Domains

In this section we extend our technique of Section 3 to several multi-parameter settings and obtain
optimal auctions in these settings. We set up a general framework that relates a linear program to
revenue maximizing mechanism design, then explore specific settings with this perspective.

A truthful-in-expectation mechanism M can be described by the following parameters: at a bid
vector v, M allocates to bidder i a fraction xi,S,v of each bundle S ⊆ M , and charges him an
expected price pi,v. We want M to be feasible, individually rational and truthful-in-expectation,
and maximize the revenue. We use the following LP:

Maximize:
∑

v∈D PrD(v) · pi,v, s.t.

– ∀i,v ∈ Ti, S ⊆ M :
∑

i xi,S,v ≤ 1

– ∀j ∈ M,v ∈ T :
∑

i,j∈S xi,S,v ≤ 1

– ∀i, (vi,v−i) ∈ Ti, (v′i,v−i) ∈ Ti:
∑

S⊆M vi(S)xi,S,(vi,v−i) − pi,(vi,v−i)

≥ ∑
S⊆M vi(S)xi,S,(v′i,v−i) − pi,(v′i,v−i)

– ∀i,∀S ⊆ M,v ∈ T : xi,S,v ≥ 0, pi,v ≥ 0

– ∀i,v−i ∈ D−i : pi,(0,v−i) = 0.
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Definition 6.3 For a solution {xi,S,v, pi,v}i∈N,S⊆M,v∈T to the LP, we say that a mechanism M α-
decomposes the solution if, at each bid vector v ∈ Ti, for each bundle S and bidder i, M allocates
exactly αxi,S,v fraction of bundle S to bidder i, and charges the bidder an expected price of αpi,v.
When α is 1, we say that M decomposes the solution.

Observation 6.4 If a mechanism M α-decomposes an optimal solution to the LP above, then M
is truthful-in-expectation and the revenue of M is at least an α fraction of the optimal auction.

Proof of the observation is essentially the same as that of Theorem 3.1. The problem of designing
optimal mechanism, however, cannot be directly reduced to solving the LP. First, the number of both
variables and constraints can be exponential in m. Second, even if we can solve the LP optimally,
not all solutions can be decomposed by mechanisms. An easy counterexample is when m = n = 3,
where each bidder i single-mindedly demands the bundle M\{i}, having a valuation of 1 for it. Let
v be the only bid vector in this case, then the solution where xi,M\{i},v = 1

2 , pi,v = 1
2 for all i is an

optimal solution to the LP, but it is obvious that no mechanism can decompose this solution.

6.2.1 Additive Valuations

In the additive domain, each bidder’s valuation vi is determined by his valuation of each item in M ,
and vi(S) for any S ⊆ M is simply

∑
j∈S vi(j). If we use xi,j,v to denote the fraction of item j being

assigned to bidder i at bid vector v, then
∑

S⊆M

xi,S,vvi(S) =
∑

S⊆M

xi,S,v

∑

j∈S

vi(j) =
∑

j∈M

vi(j)
∑

S3j

xi,S,v =
∑

j∈M

vi(j)xi,j,v.

Therefore we are able to express the truthful-in-expectation condition in the LP in terms of polynomi-
ally many variables {xi,j,v, pi,v}i∈N,j∈M,v∈T . The feasibility constraints can also be easily expressed
as

∀v ∈ T ,∀j ∈ M,
∑

i

xi,j,v ≤ 1.

Additionally, we have that

∀i,∀j ∈ M,∀v ∈ T , xi,j,v ≥ 0, pi,v ≥ 0;

∀i,∀v−i ∈ D−i, pi,(0,v−i) = 0,

then we have obtained a much smaller LP whose optimal solution has the same value as that of the
original LP. Fortunately, we are able to decompose a solution for the new LP by a mechanism: given
any feasible solution {xi,j,v, pi,v}i∈N,j∈M,v∈T for the LP, at bid vector v,

• if v is in T , for bidder i, if v−i is not in D−i, allocate nothing to i; otherwise allocate each
item j ∈ M with probability xi,j,v to bidder i. If bidder i gets item j, then charge him a price
pi,v · vi(j)∑

j′∈M vi(j)xi,j′,v
, otherwise charge him nothing for this item.

• if v is not in T , no bidder gets allocated anything, and no payment is made either.

It is obvious that the mechanism allocates the items according to xi,j,v’s. To see that it also
charges the right expected prices, just notice that at any bid vector v ∈ Ti, the expected price for
bidder i is ∑

j∈M

xi,j,vpi,v · vi(j)∑
j′∈M vi(j′)xi,j′,v

= pi,v.

Since we can solve the new LP efficiently, we have proved the following theorem:
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Theorem 6.5 For additive valuations, we can compute an optimal truthful-in-expectation mecha-
nism in time polynomial to the number of bidders, the number of items, and the size of the support
of the valuation distribution.

6.2.2 Unit Demand Valuations

In this domain, each bidder i has a valuation vi(j) for each item j ∈ M , and his valuation of a bundle
S ⊆ M is maxj∈M vi(j). Therefore, each vi(·) can also be described by a vector vi ∈ Rm. For this
domain we prove the following theorem:

Theorem 6.6 For unit demand valuations, we can compute an optimal truthful-in-expectation mech-
anism in time polynomial to the number of bidders, the number of items, and the size of the support
of the valuation distribution.

Since each bidder does not distinguish a bundle S of size larger than 1 and the item in S that
he values most, it is without loss of generality to assume that a mechanism allocates only bundles of
size at most 1. Therefore in the LP, we have only variables xi,j,v for all i ∈ N , j ∈ M and v ∈ T ,
which allows us to solve the LP efficiently. Therefore it remains only to design a mechanism that
implements a solution to the LP.

We observe that every solution to the LP can be described by a set of matrices {Xv}v∈T , where
for each v, Xv is a n×m matrix whose entries are nonnegative and satisfy the following constraints:
(i) for each row i ∈ N ,

∑
j∈M Xi,j ≤ 1; (ii) for each column j ∈ M ,

∑
i∈M Xi,j ≤ 1. To implement a

solution means that for every v ∈ D, the mechanism allocates item j to bidder i with probability Xv
i,j ,

and in each realization, no bidder should get more than one item; in other words, each realization
of the mechanism should be a n × m matrix whose entries are from {0, 1}, subject to the same
constraints (i)(ii). The problem therefore boils down to expressing a matrix in Rn×m satisfying (i)(ii)
as a convex combination of matrices in {0, 1}n×m.

When m equals n, and if all constraints (i)(ii) hold with equality, then the problem is exactly
expressing a doubly stochastic matrix by a convex combination of permutation matrices. This is
exactly what the classical Birkhoff-von Neumann theorem tells us:

Theorem 6.7 (Birkhoff-von Neumann) Given any n×n doubly stochastic matrix, we can write
it as a convex combination of permutation matrices, and the coefficients can be computed in time
polynomial in n.

Therefore, if we can extend a general n×m matrices that satisfy constraints (i)(ii) to some larger
doubly stochastic matrix in polynomial time, then we would be able to implement any LP solution.
This is exactly what we are going to do, which completes the proof of Theorem 6.6.

Lemma 6.8 Given any n×m matrix A whose entries are nonnegative real numbers that satisfy

∀i ∈ [n],
∑

j

Aij ≤ 1, ∀j ∈ [m],
∑

i

Aij ≤ 1,

we can output in polynomial time a square matrix A′ that is doubly stochastic, and the submatrix
consisting of its first n rows and m columns is identical with A.

Proof: Without loss of generality, suppose n ≤ m. We first make it an m × m square matrix
by appending m − n all zero rows. Abusing the notation, we still call it A, as it still satisfies the
condition in the theorem. Then we expand the matrix to a 2m × 2m matrix B, which has four
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m×m submatrices. Therefore B =
[

A1 A2

A3 A4

]
. We specify the four submatrices and show that B

is doubly stochastic. We let A1 be A itself, and A4 be AT , the transpose of A. Let A2 be a diagonal
matrix, whose i-th element on the diagonal is 1−∑m

j=1 Ai,j ; similarly, let A3 be a diagonal matrix,
whose j-th element on the diagonal is 1 − ∑m

i=1 Ai,j . It is then obvious that for the first m rows
and first m columns of B, the sum of elements in each of them is 1. For any of the last m rows, the
sum of the elements is 1 −∑m

j=1 Ai,j +
∑m

j=1 Ai,j = 1. The same argument shows that the sum of
elements in each of the last m columns is also 1. This completes the proof of the lemma.

6.2.3 OXS Valuations

In this domain, each bidder’s valuation vi can be described by a bipartite graph (V, E) with non-
negative edge weights. The vertex set V is partitioned into two sets: the set M of items, and a
set C whose elements are called clauses. Edges go from items to clauses. For a bundle B ⊆ M ,
the valuation vi(B) is defined to be the sum of edge weights in a maximum-weight matching of the
induced subgraph on B ∪ C. This class includes both additive valuations (the special case that the
graph is a matching from M to C) and unit-demand valuations (the special case that the set C
consists of a single element). We can interpret each clause in C as a demand that the bidder wishes
to satisfy using a single element of M . The value of satisfying a clause depends on the element that
is used to satisfy it, and the value of satisfying a set of clauses is the combined value of satisfying
each one of them. We then interpret the value of a bundle to be the maximum value that can be
achieved by satisfying a subset of clauses using distinct elements of the bundle.

Definition 6.9 A type distribution is simple if its support consists of only two types — denoted by
vL, vH — that satisfy vL(B) ≤ vH(B) for every bundle B.

Lemma 6.10 Consider a simple type distribution with Pr(vL) = πL and Pr(vH) = πH = 1−πL. Fix
two distributions DL, DH over bundles. There exists a truthful-in-expectation mechanism mapping
ti to Di for i ∈ {L,H}, if and only if vL(DL) + vH(DH) ≥ vL(DH) + vH(DL). If the set of such
mechanisms is nonempty, then the optimal revenue of any such mechanism (subject to individual
rationality) is given by the formula

OptRev(DL, DH) = vL(DL)− πHvH(DL) + πHvH(DH).

Proof: If vL(DL) + vH(DH) < vL(DH) + vH(DL) then any mechanism mapping ti to Di for
i ∈ {L,H} violates weak monotonicity and is consequently not truthful in expectation. Otherwise,
consider the posted-price mechanism with prices

pL = vL(DL)
pH = vH(DH)− vH(DL) + vL(DL).

At these prices, type vL gets zero utility from receiving DL and paying pL, but the utility from
receiving DH and paying pH is non-positive by weak monotonicity. Hence truthful bidding is weakly
dominant for vL. Type vH gets utility vH(DL) − vL(DL) regardless of whether her bid is vH or
vL; this is non-negative by our assumption of a simple type distribution. Hence our posted-price
mechanism satisfies individual rationality and incentive compatibility.

The revenue of our mechanism is

(1− πH)vL(DL) + πH(vH(DH)− vH(DL) + vL(DL)) = vL(DL)− πHvH(DL) + πHvH(DH).
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To see that this is optimal, consider any other mechanism with allocation rule ti 7→ Di and prices
p′L, p′H . Individual rationality implies p′L ≤ pL. Incentive compatibility implies p′H ≤ p′L + vH(DH)−
vH(DL), and the right side is less than or equal to pH because p′L ≤ pL = vL(DL).

Lemma 6.11 When the type distribution is simple, an optimal mechanism must give vH its utility
maximizing bundle and must give vL the bundle B that maximizes vL(B)− πHvH(B). In particular,
for simple type distributions there is always an optimal mechanism that is deterministic.

Proof: Immediate from the formula for OptRev(DL, DH).

Theorem 6.12 Let V be a class of valuation functions that is closed under scalar multiplication
and such that the problem of maximizing f(B) − g(B) (f, g ∈ V) is NP-hard, even when restricted
to instances such that maxB 6=∅{f(B)/g(B)} is between 1 and 2poly(n). Then it is NP-hard to de-
sign optimal truthful-in-expectation mechanisms for one bidder with a simple type distribution over
valuations in V.

Proof: Given f, g ∈ V let λ = maxB 6=∅{f(B)/g(B)}. Assume 1 ≤ λ ≤ 2poly(n). Define types
vL, vH such that vL(B) = f(B) and vH(B) = λg(B) for all B. Set πH = λ−1 and πL = 1 − πH .
Our definition of λ ensures that this type distribution is simple. We have seen in Lemma 6.11
that constructing an optimal truthful-in-expectation mechanism is equivalent to finding the bundles
BL, BH that maximize

vH(BH) = λg(BH)

and
vL(BL)− πHvH(BL) = f(BL)− g(BL).

In particular, constructing an optimal truthful-in-expectation mechanism requires maximizing f(BL)−
g(BL), which by hypothesis is NP-hard.

Theorem 6.13 It is NP-hard to design an optimal truthful-in-expectation mechanism for OXS bid-
ders, even when there is a single bidder with a simple type distribution.

Proof: By Theorem 6.12, it suffices to prove that the problem of maximizing f(B) − g(B) when
f, g belong to OXS is NP-hard. To do so, we reduce from Clique. Suppose we are given an undirected
graph G = (V,E) with n vertices and m edges, and we wish to decide if it contains a k-clique. Let
the items be edges of G and let the valuation functions be specified as follows.

f(B) = min
{
|B|,

(
k

2

)}

g(B) = max{|A| : A ⊆ B, every connected component of A is either acyclic or unicyclic}.

(Recall that a unicyclic graph is one that has exactly one simple cycle. Equivalently, it is a connected
graph with p vertices and p edges, for some p.) Both of these are OXS valuation functions. Valuation
f is represented by

(
k
2

)
clauses, each of which assigns value 1 to every edge of G. Valuation g is

represented by n clauses, each of which is associated to a vertex v of G and assigns value 1 to every
edge incident to v.

If G contains a k-clique then the edges of this k-clique form a bundle such that f(B) − g(B) =(
k
2

) − k =
(
k−1
2

)
. Conversely, if G contains an edge set B such that f(B) − g(B) ≥ (

k−1
2

)
then we

may assume without loss of generality that |B| ≤ (
k
2

)
. If the graph H = (V, B) has any connected

component that is a tree, then we can remove the edges of this tree from B without changing the

21



value of f(B)− g(B). Consequently, we can assume without loss of generality that every connected
component of H other than isolated vertices contains a unicyclic subgraph. Then g(B) is the number
of non-isolated vertices in H. The relation g(B) = f(B)− (f(B)− g(B)) ≤ (

k
2

)− (
k−1
2

)
= k implies

that H has at most k non-isolated vertices. Let p be the number of such vertices, and let H0 denote
the induced subgraph on these p vertices. The graph H0 has p ≤ k vertices and p +

(
k−1
2

)
edges,

which can only happen if p = k and H0 is a k-clique.

7 A Gap between Truthful-in-Expectation and Deterministic Truth-
ful Mechanisms

This section describes a 3-bidder distribution whose optimal truthful-in-expectation mechanism is
not deterministic. We furthermore prove that the revenue of this mechanism exceeds the revenue of
the optimal deterministic truthful mechanism by a factor of at least 1.001.

7.1 Description of the example

The joint distribution of type profiles is supported on a 27-element subset of R3. Each column of the
following matrix represents a type profile in the support of the distribution.




9 9 9 9 10 11 9 10 11
9 9 10 11 9 9 11 9 10
10 11 9 9 9 9 10 11 9




Each of these nine type profiles has probability 4
126 . In addition, for each type profile obtained by

taking a column of the above matrix and increasing exactly one of its entries to 20, the probability
of that type profile is 5

126 . The number of such type profiles is 18, so their total probability is
18 · (5/126) = 90/126. Combined with the matrix columns themselves, whose probabilities sum up to
9 · (4/126) = 36/126, we see that the given probabilities sum up to 1, meaning that they constitute
a valid joint distribution.

We assume that bidders are numbered 1, 2, 3, and that bidder indices are interpreted modulo 3;
for example, if i = 3 then bidder i + 1 refers to bidder 1. Let (v1, v2, v3) denote the profile of bids.
An optimal truthful-in-expectation mechanism MTIE can be described as follows.

1. If max{v1, v2, v3} ≥ 20 then we give the item to the lowest-numbered bidder whose bid is at
least 20.

2. Else, if 10 ≤ max{v1, v2, v3} < 20, then bidder i’s probability of winning is equal to 1/2 if the
other pair of bids (vi−1, vi+1) belongs to the following set of ordered pairs: {(9, 9), (9, 10), (11, 9)}.
Otherwise, bidder i’s probability of winning is zero.

3. If max{v1, v2, v3} < 10 then no one wins.

A case analysis reveals that the probabilities never sum to more than 1, and that for every bidder i,
for every profile of the other bids v−i, the probability of winning is monotonically non-decreasing in
vi.

7.2 A linear program that eliminates payment variables

We begin by modifying the linear program from Section 3 to eliminate the payment variables and
obtain an equivalent linear program whose only variables represent the allocation function. The fact
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that this is possible is a manifestation of the Revenue Equivalence Theorem, but it can also be proven
by a direct manipulation of the linear program.

Maximizing revenue in a truthful-in-expectation mechanism is equivalent to solving a linear pro-
gram specified below, where subscript i ranges over bidders (i.e. i = 1, 2, 3) and subscript s ranges
over “scenarios”, i.e. bid profiles in the product of the supports of each bidder’s distribution. Define
a relation RB(i, s, t) to mean that s, t are two scenarios and that t is obtained from s by increasing
(or preserving) player i’s bid while leaving the other players’ bids fixed.

In the original LP, we have variables xis to denote the probability that bidder i gets the item in
scenario s. We replace these variables by yis’s that represent increments in xis when bidder i’s bid
increases (with the other bids fixed), so that for each s and i, xis =

∑
t:RB(i,s,t) yit. Therefore, by

requiring yis to be nonnegative for each s, we guarantee the monotonicity of the mechanism. The
feasibility condition

∑
i xis ≤ 1 can be directly translated as

∑
i,t:RB(i,t,s) yit ≤ 1.

In order to have an LP for the maximum revenue, we still need to specify payments. In the follow-
ing we show that, given yis’s, we can express the maximum revenue achievable without introducing
new variables. 13

Suppose vis denotes the valuation of bidder i in scenario s. When vis is 0, by individual rationality
we know that the expected payment pis is 0. Let s′ be the scenario in which bidder i has increased
his bid to the next larger value in the support while all other bids remain unchanged. By truthfulness
we have xis′vis′ − pis′ ≥ xisvis′ − pis, i.e., pis′ ≤ vis′(xis′ − xis) + pis = vis′yis′ . Inductively, for any
scenario t we have that pit ≤

∑
s:R(i,s,t) visyis. Therefore, the revenue of the mechanism can be no

larger than if we simply set the expected payments in scenario t to be
∑

s:R(i,s,t) visyis. It is easy
to check that this payment scheme satisfies individual rationality conditions and the other truthful
conditions. Therefore this payment scheme gives the maximum revenue under yis’s, and we can
express the revenue as ∑

s,i

πs

∑

t:RB(i,t,s)

vityit,

where πs denotes the probability of scenario s. 14

To simplify notation, we define

ψis = vis ·

 ∑

t:RB(i,s,t)

πt


 ,

and change the order of summations, the new objective function can be expressed as
∑

i,s ψisyis.
Now we write out the full new LP, which we have shown to give the maximum revenue of truthful-

in-expectation mechanisms:

max
∑

i,s ψisyis

s.t.
∑

i,s:RB(i,s,t) yis ≤ 1 ∀t
yis ≥ 0 ∀i, s

13This is in essence a rederivation of a characterization result from Myerson in the discrete case.
14One way of making these payments ex post individually rational is to charge a random amount to player i.

Conditional on i winning in scenario t, the amount vis is charged with probability yis/xit for every s such that
RB(i, s, t).
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The dual is the following linear program.

min
∑

t zt

s.t.
∑

t:RB(i,s,t) zt ≥ ψis ∀i, s
zt ≥ 0 ∀t

7.3 Analysis of the example

For the distribution specified in Section 7.1, the optimal primal and dual solutions are specified as
follows. For notational convenience, we use a, b, c, d to denote 9, 10, 11, 20, respectively. Thus, for
example y2,adc would denote the variable yis for bidder i = 2 in scenario s = (a, d, c) = (9, 20, 11).
Also for convenience, we will only specify the nonzero yis and zt variables.

The primal solution has 27 nonzero values. Nine of them are:

y2,aab = y3,aab = y1,aba = y2,aba = y1,baa = y3,baa = y1,aac = y2,caa = y3,aca = 1/2 (1)

In addition, for every scenario s in which player i’s bid is 20, the primal variable yis is equal to
1−(yit+yiu+yiv), where t, u, v are obtained from s by changing player i’s bid to 9, 10, 11, respectively.
Thus,

y1,daa = y1,dac = y1,dba = y2,ada = y2,cda = y2,adb = y3,aad = y3,acd = y3,bad = 1/2
y1,dab = y1,dca = y1,dcb = y2,bda = y2,adc = y2,bdc = y3,abd = y3,cad = y3,cbd = 1

The dual solution has 27 nonzero values, one for each scenario. Nine of them are:

zaab = zaba = zbaa = zaac = zaca = zcaa =
15
126

zacb = zbac = zcba =
2

126
In addition, for every scenario s in which one player’s bid was raised to 20, the dual variable zs is
equal to 100

126 .
It remains to check that these primal and dual solutions are feasible, that they satisfy both primal

and dual complementary slackness, and that the primal solution y is the unique solution satisfying
complementary slackness with respect to z. (This last step is necessary in order to substantiate the
claim that there is no deterministic truthful mechanism which gets as much revenue.)

Primal feasibility and primal complementary slackness are easy to check. To verify dual feasibility
and dual complementary slackness, we need to check 192 constraints (3 players times 64 scenarios)
and we do it using a five-case analysis.

Case 1: Pairs i, s such that at least one bid in s is equal to 20. The value of ψis is equal to
kis · vis ·

(
5

126

)
, where kis denotes the number of scenarios t such that RB(i, s, t) holds. The value of∑

t:RB(i,s,t) zt is kis · 100
126 . Since vis ≤ 20 for all i, s, we see that these constraints are always satisfied,

and that the tight constraints are precisely those with kis = 0 or vis = 20.

Case 2: All other pairs i, s such that yis > 0. There are 9 remaining pairs i, s such that yis > 0,
and they break up into 3 orbits under the action of the symmetry group that cyclically permutes
the bidders’ identities. It suffices to check one representative of each of these orbits, for example the
constraints corresponding to primal variables y2,aab, y3,aab, y1,aac. These constraints are

ψ2,aab = zaab + zacb + zadb

ψ3,aab = zaab + zaac + zaad

ψ1,aac = zaac + zbac + zdac
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We now compute that

ψ2,aab = 9 ·
(

4
126

+
4

126
+

5
126

)
= 9 · 4 + 4 + 5

126
=

117
126

zaab + zacb + zadb =
15
126

+
2

126
+

100
126

=
117
126

ψ3,aab = 10 ·
(

4
126

+
4

126
+

5
126

)
= 10 · 4 + 4 + 5

126
=

130
126

zaab + zaac + zaad =
15
126

+
15
126

+
100
126

=
130
126

ψ1,aac = 9 ·
(

4
126

+
4

126
+

5
126

)
= 9 · 4 + 4 + 5

126
=

117
126

zaac + zbac + zdac =
15
126

+
2

126
+

100
126

=
117
126

,

which confirms dual feasibility and complementary slackness in these cases.

Case 3: All remaining pairs (i, s) such that πs > 0. When all bids are less than 20, there
are only nine scenarios s such that πs > 0, namely the nine columns of the matrix above. For each
column of the matrix there are three choices of i, making for 27 pairs (i, s) in total. However, 9 of
these pairs were checked in Case 2 above. This leaves 18 pairs that form 6 orbits under the action
of the cyclic symmetry group. The following list of 6 constraints contains one representative of each
orbit.

ψ1,aab ≤ zaab + zdab

ψ2,aac ≤ zaac + zadc

ψ3,aac ≤ zaac + zaad

ψ1,acb ≤ zacb + zdcb

ψ2,acb ≤ zacb + zadb

ψ3,acb ≤ zacb + zacd

The left sides of these 6 constraints are computed as follows.

ψ1,aab = 9 ·
(

4
126

+
5

126

)
=

81
126

ψ2,aac = 9 ·
(

4
126

+
5

126

)
=

81
126

ψ3,aac = 11 ·
(

4
126

+
5

126

)
=

99
126

ψ1,acb = 9 ·
(

4
126

+
5

126

)
=

81
126

ψ2,acb = 11 ·
(

4
126

+
5

126

)
=

99
126

ψ3,acb = 10 ·
(

4
126

+
5

126

)
=

90
126

Note that the left side of each constraint is at most 99
126 . The right side of each constraint is at least

102
126 , because in each of the six constraints, the first term on the right side is at least 2

126 and the
second term is equal to 100

126 . Therefore, each of the six constraints holds, which completes Case 3.
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Case 4: Pairs (i, s) such that πs = 0 but ψis > 0. If ψis > 0 then there is a scenario t such that
πt > 0 and RB(i, s, t) holds. Consider the least such t, i.e. the one obtained from s by raising i’s bid
by the minimum amount. Then ψit = ψis · (vit/vis) > ψis. As πt > 0, we have already verified the
constraint

∑
u:RB(i,t,u) zu ≥ ψit in one of the earlier cases. Now it follows that

∑
u:RB(i,s,u) zu > ψis,

i.e. the dual constraint indexed by (i, s) holds and it is not tight.

Case 5: Pairs (i, s) such that ψis = 0. In this case, it trivially holds that ψis ≤
∑

t:RB(i,s,t) zt,
with equality if and only if all of the dual variables in the sum on the right are zero.

We are now in a position to prove that every optimal primal solution satisfies (1). The dual
variables zt are strictly positive for every t ∈ {aab, aba, baa, aac, aca, caa, acb, bac, cba}. Via comple-
mentary slackness, this gives nine equations that must be satisfied by every optimal primal solution.

∑

i,s:RB(i,s,t)

yis = 1 ∀t ∈ {aab, aba, baa, aac, aca, caa, acb, bac, cba}. (2)

Of the primal variables yis that participate in these nine linear equations, many of them are re-
quired, by complementary slackness, to take the value 0 at any optimal primal solution because the
corresponding dual constraint is not tight. We can determine which of the relevant variables yis are
allowed to take a nonzero value by reviewing the case analysis above. If (i, s) satisfies RB(i, s, t) for
some t ∈ {aab, aba, baa, aac, aca, caa, acb, bac, cba}, then ψis > 0 and no bid in s is equal to 20. This
excludes Cases 5 and 1, respectively. None of the dual constraints in Cases 3 and 4 are tight, so none
of the corresponding variables yis can take a nonzero value. This leaves Case 2, which corresponds
to the nine variables occurring in (1). Rewriting the system of linear equations (2) in terms of these
nine variables, we obtain the linear system




1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1







y2,aab

y3,aab

y1,aac

y3,baa

y1,baa

y2,caa

y1,aba

y2,aba

y3,aca




=




1
1
1
1
1
1
1
1
1




(3)

The matrix on the left side is invertible, so the unique solution of the linear system is the one given
in (1).

7.4 Bounding the integrality gap

Going a step further, we can bound the integrality gap in this example by observing that integer
solutions of the primal LP must satisfy an additional constraint. The key observation is that the
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constraints of the primal LP imply the relation



1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1







y2,aab

y3,aab

y1,aac

y3,baa

y1,baa

y2,caa

y1,aba

y2,aba

y3,aca




¹




1
1
1
1
1
1
1
1
1




(4)

which is obtained by taking the 9× 9 submatrix of the LP constraint matrix whose rows are indexed
by scenarios aab, aac, bac, baa, caa, cba, aba, aca, acb, in that order, and whose columns are indexed
by the nine variables that appear in the column vector on the left side of the inequality. Multiplying
the left and right sides of (4) by the row vector (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2), we obtain

y2,aab + y3,aab + y1,aac + y3,baa + y1,baa + y2,caa + y1,aba + y2,aba + y3,aca ≤ 9
2
.

Together with the constraints yis ∈ Z for all i, s, this implies the stronger inequality

y2,aab + y3,aab + y1,aac + y3,baa + y1,baa + y2,caa + y1,aba + y2,aba + y3,aca ≤ 4. (5)

If we add this constraint into the primal LP, it modifies the dual by adding an extra variable ζ that
enters the dual objective function with coefficient 4, and that enters various dual constraints (those
corresponding to primal variables occurring in (5)) with coefficient 1. If we now set

zaab = zaba = zbaa = zaac = zaca = zcaa =
13
126

zacb = zbac = zcba = 0

ζ =
4

126

and leave the remaining dual variables unchanged, it maintains dual feasibility. This can be verified
by repeating the case analysis above. Cases 1,4,5 are unaffected by the change. In Case 2 the
change in the z variables reduces the right side of each constraint by 4

126 but this is compensated
by the introduction of ζ into the right side. In Case 3 the change in the z variables reduces the
right side of each constraint by 2

126 , but the analysis in Case 3 established that the right side of each
constraint already exceeded the left side by at least 3

126 , so reducing the right side by 2
126 maintains

dual feasibility.
Consequently, the objective value of the new dual LP at this feasible solution constitutes an upper

bound on the value of any integer primal solution. The new dual objective value is

4 · 4
126

+ 6 · 13
126

+ 18 · 100
126

=
1894
126

,

whereas the old dual objective value was

6 · 15
126

+ 3 · 2
126

+ 18 · 100
126

=
1896
126

.

Thus, the revenue of the optimal truthful-in-expectation mechanism improves on the revenue of any
deterministic truthful mechanism by at least a factor of 1896

1894 > 1.001.
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Remark: In the above example, if we take out from the support all points that have a bid 20 in
it, we get a smaller support of 9 points. From the randomized mechanism in the example we induce a
mechanism on this smaller support. We claim that it is not implementable by any universally truthful
mechanism on this support, i.e., it cannot be expressed a convex combination of deterministic truthful
mechanisms.

To see this, consider any deterministic truthful mechanism and let (yis) denote the corresponding
LP solution. Since the values yis are all integers, we proved above that inequality (5) is satisfied.
Our truthful-in-expectation mechanism does not satisfy this linear inequality (it has y2,aab + y3,aab +
y1,aac +y3,baa +y1,baa +y2,caa +y1,aba +y2,aba +y3,aca = 9

2), and hence we have shown that even on this
smaller support, this truthful-in-expectation mechanism cannot be written as a convex combination
of deterministic truthful mechanisms.

Note that in this remark, we used only the fact a < b < c and not the concrete values of a, b
and c. Therefore we have shown the following lemma, which is asserted in the second sentence of
Theorem 4.7.

Lemma 7.1 For three bidders, each bidder having only three possible values in the support, there is a
truthful in expectation mechanism that cannot be implemented by any universally truthful mechanism.
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