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Abstract

This short note exhibits a truthful-in-expectation
O( log m

log log m )-approximation mechanism for combina-
torial auctions with subadditive bidders that uses
polynomial communication.

1 Introduction

We consider the problem of maximizing the social
welfare in combinatorial auctions with subadditive
bidders. In this problem, we have a set M , |M | = m,
of heterogeneous items, and n bidders. Each bidder i
has a valuation function vi, vi : 2M → R. We assume
that each valuation vi is normalized (vi(∅) = 0), non-
decreasing, and subadditive: for any two bundles S
and T , vi(S) + vi(T ) ≥ vi(S ∪ T ). This important
class of valuations contains other interesting classes.
In particular, it strictly contains the class of submod-
ular valuations. Our goal is to find an allocation of
the items (S1, . . . , Sn) that maximizes the social wel-
fare: Σivi(Si). The efficiency of our algorithms will
be measured in terms of the natural parameters of
the problem: n and m. Since the valuation func-
tions are objects of exponential size, we assume that
they are represented by black boxes that can answer
any type of queries. In particular, we assume that
bidders are computationally unbounded and measure
only the amount of communication between them.

Feige [8] obtains a 2-approximation algorithm by
applying an ingenious randomized rounding. This
is the best possible [6] in polynomial communica-
tion. Much research was concerned with the design
of truthful algorithms for the problem: algorithms
in which a profit-maximizing strategy for each bid-

der is to truthfully answer the queries. The sim-
plest and strongest notion considered is determinis-
tic truthfulness, where no randomization is allowed.
The VCG mechanism is truthful and optimally solves
the problem, but is not computationally efficient.
The best truthful approximation algorithm known
achieves a poor approximation ratio of O(

√
m) [6],

which is achieved by a maximal-in-range algorithm
(see below). An evidence that deterministic algo-
rithms cannot achieve an improved approximation
ratio was given in [5]: maximal-in-range algorithms
cannot achieve an approximation ratio better than
m

1
6 with polynomial communication.

If randomization is allowed, there exists a univer-
sally truthful mechanism (a distribution over deter-
ministic truthful mechanisms) that guarantees an ap-
proximation ratio of O(log m log log m) [3]. This pa-
per relaxes the solution concept and considers mech-
anisms that are truthful in expectation: truth telling
maximizes the expected profit of each bidder, where
the expectation is taken over the internal random
coins of the algorithm. We stress that truthfulness in
expectation is much weaker than universal truthful-
ness: in particular, bidders that are not risk neutral
may not be incentivized to bid truthfully. See [7] for
a discussion.

In this note we show that there exists a truthful-in-
expectation O( log m

log log m )-approximation mechanism
that uses only polynomial amount of communication.
While this only slightly improves the best approxima-
tion ratio provided by universally truthful algorithms
(at the cost of weakening the solution concept), we
feel that this result is of interest for two main reasons
(1) the random-sampling based techniques of [3] do
not seem capable of achieving a better than a loga-
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rithmic factor, so this result might hint at a perfor-
mance gap between truthful-in-expectation and uni-
versally truthful mechanisms in our setting, and (2)
our rounding technique is non-trivial and may be of
independent interest.

Our algorithm is described in the communication
complexity model. The model is best suited for prov-
ing strong, unconditional impossibility results. How-
ever, if we want algorithms designed in the model to
be useful, they should not take advantage of the un-
limited computational power of the bidders. Indeed,
essentially all known algorithms known for combina-
torial auctions need polynomially bounded compu-
tation power and use a restricted and natural com-
munication form, e.g., demand queries (given prices
per item p1, . . . , pm return a bundle that maximizes
the profit). Unfortunately, we do not know how to
implement our algorithm using demand queries, or
any other type of natural query. In a sense, this is an
abuse of the communication complexity model; hence
we recommend viewing our result as demonstrating
the falsehood of certain strong impossibility results
for the problem, rather than as a “real” mechanism
suitable for use in combinatorial auctions.

Let us briefly discuss the techniques we use. Al-
most all truthful deterministic mechanisms known in
the literature are maximal-in-range, a scaled-down
version of the classic VCG mechanism: for every set
of valuations, select the welfare-maximizing alloca-
tion in a predefined set of allocations. However, as
mentioned above, [5] shows that this method can only
guarantee a poor approximation ratio in our setting.
One way to overcome this obstacle was spelled out
by [4] which suggested the use of maximal in dis-
tributional range (MIDR) mechanisms: for every set
of valuations, select the welfare-maximizing distribu-
tion in a predefined set of distributions over alloca-
tions, then sample an allocation from this distribu-
tion. This results in a truthful-in-expectation mech-
anism. Furthermore, in [4] it is shown that for some
problems MIDR mechanisms may be more powerful
than any universally truthful mechanism.

Our mechanism is also MIDR1. The basic idea is to
represent each bidder by a proxy bidder, find the op-
timal fractional solution among these proxy bidders,
and then round the fractional solution. Each proxy
bidder is defined so that he “simulates” the expected
value of the bundle after the randomized rounding.
The main obstacle is to prove feasibility while still

1In fact, our range will consist of distributions over infeasi-
ble allocations, but we will always output a distribution over
feasible allocations with the same expected welfare as the best
distribution in the range. Hence the mechanism is equivalent
to MIDR (see [5]), and truthfulness in expectation follows.

being able to relate the value of the rounded solu-
tion (that was calculated with respect to the proxy
bidders) to the original bidders.

We note that Lavi and Swamy [9] already implic-
itly used maximal-in-distributional-range algorithms
together with the LP relaxation of the problem. Our
solution requires a subtler rounding of the LP, and
in particular overcomes one of the main barriers of
[9]: their decomposition is based on an algorithm
that “verifies” the integrality gap, and thus they
can only provide a truthful-in-expectation O(

√
m)-

approximation mechanism for our setting. Our mech-
anism uses a direct approach to “decompose” a linear
program with proxy bidders. This is one of the main
reasons for our success in guaranteeing a better ap-
proximation ratio.

The main question we leave open is the existence of
a constant-ratio truthful-in-expectation mechanism
for combinatorial auctions with subadditive bidders.
A first step in this direction might be to prove that
no MIDR mechanism can achieve an O(1) approxi-
mation in polynomial time.

2 The Mechanism

2.1 The Range

We first remind the reader of the linear program re-
laxation of the problem:
Maximize: Σi,Sxi,Svi(S)
Subject to:

• For each item j: Σi,S|j∈Sxi,S ≤ 1

• for each bidder i: ΣSxi,S ≤ 1

• for each i, S: xi,S ≥ 0

Definition 2.1 A distribution D over (not neces-
sarily feasible) allocations is called (c, p)-fractional if
there exists a feasible fractional solution {xi,S}i,S to
the LP such that D is equal to the distribution pro-
duced by the following process: with probability p no
bidder is allocated any item. With probability 1 − p
each bidder i receives exactly one bundle S with prob-
ability xi,S and keeps each item j ∈ S with probability
c, independently at random.

Definition 2.2 (the range) The range Rc,p con-
sists of all (c, p)-fractional distributions.

Before proving that there is one distribution inRc,p

that provides a good approximation, we require the
following definition:
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Definition 2.3 Given a valuation v, let the c-proxy
valuation v′ be:

v′(S) = ET∼DS
[v(T )]

where D is the distribution where each j ∈ S is in T
with probability c independently at random.

Lemma 2.4 The optimal distribution in a Rc,p

range is an O( 1
c·p )-approximation to the optimal so-

cial welfare if the valuations are subadditive.

The proof of this lemma immediately follows by
considering the optimal allocation and using the fol-
lowing proposition from [8]:

Proposition 2.5 (paraphrasing [8]) Let S be a
bundle, v a subadditive valuation, and c such that
0 ≤ c ≤ 1 and 1

c is an integer. Then, v′(S) ≥ c ·v(S),
where v′ is the c-proxy valuation of v.

2.2 The Algorithm

1. For each valuation vi of bidder i, let v′i be the
c-proxy valuation.

2. Solve the linear program relaxation of the prob-
lem with respect to the c-proxy valuations v′i.

3. Each bidder i is tentatively assigned exactly one
bundle Si, where bundle S is allocated to i with
probability exactly xi,S . If there is an item that
is allocated more than 1

c times, the algorithm
halts and no bidder is allocated any items. Oth-
erwise, proceed to the next steps.

4. For each bidder i, let qi be the probability that
some item in Si was allocated more than 1

c − 1
times in the following random experiment: each
bidder i′, i′ 6= i, is allocated bundle S with prob-
ability xi,S .

5. Independently for each item j ∈ S, select at most
one bidder to receive j, so that each bidder that
is tentatively allocated Si where j ∈ Si receives
item j with probability exactly c.

6. For each bidder i, with probability 1 − p
1−qi

he
is not allocated any items, and with probability

p
1−qi

he keeps the items that he was assigned in
the previous step.

We note that the last step of the algorithm is a re-
implementation of the main idea behind the truthful-
in-expectation mechanism for single-minded bidders
of [1].

In our proofs we assume m is large enough (when m
is a constant, VCG can be implemented in polynomial

time in n). Also, from now on we fix c = log log m
100 log m and

p = 1
20 . We first have to make sure that the algorithm

is correctly defined. For that we have to prove that
p ≤ 1 − qi, for every qi. This follows from the next
claim [8, 6]:

Claim 2.6 ([8]) Fix any feasible solution of the lin-
ear program. Allocate each bidder i exactly one bun-
dle where each bundle S is allocated with probability
xi,S. The probability that no item is allocated more
than 1

c times is at least 1− 1
m .

In other words, 1 − qi ≥ 1 − 1
m ≥ p, as needed. We

now show that the algorithm indeed finds the opti-
mal distribution in the range and uses a polynomial
amount of communication.

Lemma 2.7 The algorithm finds a distribution with
value that equals the distribution with the maximum
expected welfare in R(c,p).

Proof: Notice that the optimal solution of the
linear program with the proxy valuations is exactly
the expected value of the optimal distribution inRc,1:
the proxy valuations “simulate” the random process
where each bidder keeps each item with probability c.
Thus, it suffices to prove that the algorithm always
finds a solution with value exactly p · OPT , where
OPT is the value of the optimal solution of the LP.
This will guarantee us that the expected value of the
solution equals R(c,p).

Notice that after the tentative assignment in Step
3 the expected value of the sum of the tentative bun-
dles (with respect to the proxy valuations) is exactly
the value of the optimal solution of the linear pro-
gram. After step 5 the expected value of the bundles
assigned to the bidders (now with respect to the real
valuations) is greater than p · OPT . The last step
“cancels” some of the allocations so that if bidder i
was allocated bundle S, the probability he will be al-
located some items from S (i.e., the probability that
auction is not canceled at Step 3 and that he keeps
some items at Step 6) is exactly p · xi,S . Thus the
expected value of the solution is exactly p · OPT , as
needed.

Lemma 2.8 The communication complexity of the
algorithm is polynomial in n and m.

Proof: The only two steps for which it is not obvi-
ous that only polynomial communication is required
are Steps 2 and the calculation of the qi’s. In Step
2 we solve a linear program that calculates the op-
timal fractional solution for some valuations. This
can be done in polynomial communication, as long
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as demand queries are available [2]. In our case we
need to compute answers to demand queries with re-
spect to the proxy valuations. This can be done by
each bidder i with no additional communication since
each proxy valuation v′i depends only on vi. We note
that the support of the solution of the linear program
consists only of polynomially many variables [2].

Calculating each qi can be done using no commu-
nication cost simply by enumerating over all possible
outputs of the random coins.

Together we have:

Theorem 2.9 There exists a truthful-in-expectation
O( log m

log log m )-approximation mechanism for combina-
torial auctions with submodular bidders. The algo-
rithm uses polynomial communication.
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