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We study simple and approximately optimal auctions for agents with a particular form of
risk-averse preferences. We show that, for symmetric agents, the optimal revenue (given a prior
distribution over the agent preferences) can be approximated by the first-price auction (which is
prior independent), and, for asymmetric agents, the optimal revenue can be approximated by an
auction with simple form. These results are based on two technical methods. The first is for
upper-bounding the revenue from a risk-averse agent. The second gives a payment identity for
mechanisms with pay-your-bid semantics.
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1 Introduction

We study optimal and approximately optimal auctions for agents with risk-averse preferences. The
economics literature on this subject is largely focused on either comparative statics, i.e., is the first-
price or second-price auction better when agents are risk averse, or deriving the optimal auction,
e.g., using techniques from optimal control, for specific distributions of agent preferences. The
former says nothing about optimality but considers realistic prior-independent auctions; the latter
says nothing about realistic and prior-independent auctions. Our goal is to study approximately
optimal auctions for risk-averse agents that are realistic and not dependent on assumptions on the
specific form of the distribution of agent preferences. One of our main conclusions is that, while
the second-price auction can be very far from optimal for risk-averse agents, the first-price auction
is approximately optimal for an interesting class of risk-averse preferences.

The microeconomic treatment of risk aversion in auction theory suggests that the form of
the optimal auction is very dependent on precise modeling details of the preferences of agents,
see, e.g., Maskin and Riley (1984) and Matthews (1984). The resulting auctions are unrealistic
because of their reliance on the prior assumption and because they are complex (cf. Wilson, 1987).
Approximation can address both issues. There may be a class of mechanisms that is simple, natural,
and much less dependent on exact properties of the distribution. As an example of this agenda for
risk neutral agents, Hartline and Roughgarden (2009) showed that for a large class of distributional
assumptions the second-price auction with a reserve is a constant approximation to the optimal
single-item auction. This implies that the only information about the distribution of preferences
that is necessary for a good approximation is a single number, i.e., a good reserve price. Often
from this sort of “simple versus optimal” result it is possible to do away with the reserve price
entirely. Dhangwatnotai et al. (2010) and Roughgarden et al. (2012) show that simple and natural
mechanisms are approximately optimal quite broadly. We extend this agenda to auction theory for
risk-averse agents.

The least controversial approach for modeling risk-averse agent preferences is to assume agents
are endowed with a concave function that maps their wealth to a utility. This introduces a non-
linearity into the incentive constraints of the agents which in most cases makes auction design
analytically intractable. We therefore restrict attention to a very specific form of risk aversion
that is both computationally and analytically tractable: utility functions that are linear up to a
given capacity and then flat. Importantly, an agent with such a utility function will not trade
off a higher probability of winning for a lower price when the utility from such a lower price is
greater than her capacity. While capacitated utility functions are unrealistic, they form a basis for
general concave utility functions. In our analyses we will endow the benchmark optimal auction
with knowledge of the agents’ value distribution and capacity; however, some of the mechanisms
we design to approximate this benchmark will be oblivious to them.

As an illustrative example, consider the problem of maximizing welfare by a single-item auction
when agents have known capacitated utility functions (but unknown values). Recall that for risk-
neutral agents the second-price auction is welfare-optimal as the payments are transfers from the
agents to the mechanism and cancel from the objective welfare which is thus equal to value of the
winner. (The auctioneer is assumed to have linear utility.) For agents with capacitated utility,
the second-price auction can be far from optimal. For instance, when the difference between the
highest and second highest bid is much larger than the capacity then the excess value (beyond the
capacity) that is received by the winner does not translate to extra utility because it is truncated
at the capacity. Instead, a variant of the second-price auction, where the highest bidder wins
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and is charged the maximum of the second highest bid and her bid less her capacity, obtains the
optimal welfare. Unfortunately, this auction is parameterized by the form of the utility function
of the agents. There is, however, an auction, not dependent on specific knowledge of the utility
functions or prior distribution, that is also welfare optimal: If the agents values are drawn i.i.d.
from a common prior distribution then the first-price auction is welfare-optimal. To see this: (a)
standard analyses show that at equilibrium the highest-valued agent wins, and (b) no agent will
shade her bid more than her capacity as she receives no increased utility from such a lower payment
but her probability of winning strictly decreases.

Our main goal is to duplicate the above observation for the objective of revenue. It is easy to see
that the gap between the optimal revenues for risk-neutral and capacitated agents can be of the same
order as the gap between the optimal welfare and the optimal revenue (which can be unbounded).
When the capacities are small the revenue of the welfare-optimal auction for capacitated utilities
is close to its welfare (the winners utility is at most her capacity). Of course, when capacities
are infinite or very large then the risk-neutral optimal revenue is close to the capacitated optimal
revenue (the capacities are not binding). One of our main technical results shows that even for
mid-range capacities one of these two mechanisms that are optimal at the extremes is close to
optimal.

As a first step towards understanding profit maximization for capacitated agents, we charac-
terize the optimal auction for agents with capacitated utility functions. We then give a “simple
versus optimal” result showing that either the revenue-optimal auction for risk-neutral agents or
the above welfare-optimal auction for capacitated agents is a good approximation to the revenue-
optimal auction for capacitated agents. The Bulow-Klemperer (1996) Theorem implies that with
enough competition (and mild distributional assumptions) welfare-optimal auctions are approxi-
mately revenue-optimal. Of course, the first-price auction is welfare-optimal and prior-independent;
therefore we conclude that it is approximately revenue-optimal for capacitated agents.

Our “simple versus optimal” result comes from an upper bound on the expected payment of an
agent in terms of her allocation rule (cf. Myerson, 1981). This upper bound is the most technical
result in the paper; the difficulties that must be overcome by our analysis are exemplified by the
following observations. First, unlike in risk-neutral mechanism design, Bayes-Nash equilibrium does
not imply monotonicity of allocation rules. There are mechanisms where an agent with a high value
would prefer less overall probabability of service than she would have obtained if she had a lower
value (Example 3.1 in Section 3). Second, even in the case where the capacity is higher than the
maximum value of any agent, the optimal mechanism for risk-averse agents can generally obtain
more revenue than the optimal mechanism for risk-neutral agents (Example 4.2 in Section 4). This
may be surprising because, in such a case, the revenue-optimal mechanism for risk-neutral agents
would give any agent a wealth that is within the linear part of her utility function. Finally, while
our upper bound on risk-averse payments implies that this relative improvement is bounded by
a factor of two for large capacities, it can be arbitraily large for small capacities (Example 4.1 in
Section 4).

It is natural to conjecture that the first-price auction will continue to perform nearly optimally
well beyond our simple model (capacitated utility) of risk-averse preferences. It is a relatively
straightforward calculation to see that for a large class of risk-averse utility functions from the
literature (e.g., Matthews, 1984) the first-price auction is approximately optimal at extremal risk
parameters (risk-neutral or extremely risk-averse). We leave to future work the extension of our
analysis to mid-range risk parameters for these other families of risk-averse utility functions.
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It is significant and deliberate that our main theorem is about the first-price auction which is
well known to not have a truthtelling equilibrium. Our goal is a prior-independent mechanism.
In particular, we would like our mechanism to be parameterized neither by the distribution on
agent preference nor by the capacity that governs the agents utility function. While it is stan-
dard in mechanism design and analysis to invoke the revelation principle (cf. Myerson, 1981) and
restrict attention to auctions with truthtelling as equilibrium, this principle cannot be applied in
prior-independent auction design. An auction with good equilibrium can be implemented by one
with truthtelling as an equilibrium if the agent strategies can be simulated by the auction. In a
Bayesian environment, agent strategies are parameterized by the prior distribution and therefore
the suggested revelation mechanism is not generally prior independent.

Risk Aversion, Universal Truthfulness, and Truthfulness in Expectation. Our results
have an important implication on a prevailing and questionable perspective that is explicit and
implicit broadly in the field of algorithmic mechanism design. Two standard solution concepts
from algorithmic mechanism design are “universal truthfulness” and “truthfulness in expectation.”
A mechanism is universally truthful if an agent’s optimal (and dominant) strategy is to reveal
her values for the various outcomes of the mechanism regardless of the reports of other agents
or random coins flipped by the mechanism. In contrast, in a truthful-in-expectation mechanism,
revealing truthfully her values only maximizes the agent’s utility in expectation over the random
coins tossed by the mechanism. Therefore, a risk-averse agent modeled by a non-linear utility
function may not bid truthfully in a truthful-in-expectation mechanism designed for risk-neutral
agents, whereas in a universally truthful mechanism an agent behaves the same regardless of her risk
attitude. For this reason, the above-mentioned perspective sees universally truthful mechanisms
superior because the performance guarantees shown for risk-neutral agents seem to apply to risk-
averse agents as well.

This perspective is incorrect because the optimal performance possible by a mechanism is dif-
ferent for risk-neutral and risk-averse agents. In some cases, a mechanism may exploit the risk
attitude of the agents to achieve objectives better than the optimal possible for risk-neutral agents;
in other cases, the objective itself relies on the utility functions (e.g. social welfare maximization),
and therefore the same outcome has a different objective value. In all these situations, the per-
formance guarantee of universally truthful mechanisms measured by the risk-neutral optimality
loses its meaning. We have already discussed above two examples for capacitated agents that il-
lustrate this point: for welfare maximization the second-price auction is not optimal, for revenue
maximization the risk-neutral revenue-optimal auction can be far from optimal.

The conclusion of the discussion above is that the universally truthful mechanisms from the
literature are not generally good when agents are risk averse; therefore, the solution concept of
universal truthfulness buys no additional guarantees over truthfulness in expectation. Nonetheless,
our results suggest that it may be possible to develop a general theory for prior-independent mech-
anisms for risk-averse agents. By necessity, though, this theory will look different from the existing
theory of algorithmic mechanism design.

Summary of Results. Our main theorem is that the first-price auction is a prior-independent
5-approximation for revenue for two or more agents with i.i.d. values and risk-averse preferences
(given by a common capacity). The technical results that enable this theorem are as follows:

• The optimal auction for agents with capacitated utilities is a two-priced mechanism where a
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winning agent either pays her full value or her value less her capacity.

• The expected revenue of an agent with capacitated utility and regular value distribution can
be bounded in terms of an expected (risk-averse) virtual surplus, where the (risk-averse)
virtual value is twice the risk-neutral virtual value plus the value minus capacity (if positive).

• Either the mechanism that optimizes value minus capacity (and charges the Clarke payments
or value minus capacity, whichever is higher) or the risk-neutral revenue optimal mechanism
is a 3-approximation to the revenue optimal auction for capacitated utilities.

• We characterize the Bayes-Nash equilibria of auctions with capacitated agents where each
bidder’s payment when served is a deterministic function of her value. An example of this
is the first-price auction. The BNE strategies of the capacitated agents can be calculated
formulaically from the BNE strategies of risk-neutral agents.

Some of these results extend beyond single-item auctions. In particular, the characterization
of equilibrium in the first-price auction holds for position auction environments (i.e., where agents
are greedily by bid assigned to positions with decreasing probabilities of service and charged their
bid if served). Our simple-versus-optimal 3-approximation holds generally for downward-closed
environments, non-identical distributions, and non-identical capacities.

Related Work. The comparative performance of first- and second-price auctions in the presence
of risk aversion has been well studied in the Economics literature. From a revenue perspective, first-
price auctions are shown to outperform second-price auctions very broadly. Riley and Samuelson
(1981) and Holt (1980) show this for symmetric settings where bidders have the same concave
utility function. Maskin and Riley (1984) show this for more general preferences.

Matthews (1987) shows that in addition to the revenue dominance, bidders whose risk attitudes
exhibit constant absolute risk aversion (CARA) are indifferent between first- and second-price
auctions, even though they pay more in expectation in the first-price auction. Hu et al. (2010)
considers the optimal reserve prices to set in each, and shows that the optimal reserve in the first
price auction is less than that in the second price auction. Interestingly, under light conditions on
the utility functions, as risk aversion increases, the optimal first-price reserve price decreases.

Matthews (1983) and Maskin and Riley (1984) have considered optimal mechanisms for a single
item, with symmetric bidders (i.i.d. values and identical utility function), for CARA and more
general preferences.

Recently, Dughmi and Peres (2012) have shown that by insuring bidders against uncertainty,
any truthful-in-expectation mechanism for risk-neutral agents can be converted into a dominant-
strategy incentive compatible mechanism for risk-averse buyers with no loss of revenue. However,
there is potentially much to gain—mechanisms for risk-averse buyers can achieve unboundedly
more welfare and revenue than mechanisms for risk-neutral bidders, as we show in Example 4.1 of
Section 4.

2 Preliminaries

Risk-averse Agents. Consider selling an item to an agent who has a private valuation v drawn
from a known distribution F . Denote the outcome by (x, p), where x ∈ {0, 1} indicates whether
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the agent gets the item, and p is the payment made. The agent obtains a wealth of vx− p for such
an outcome and the agent’s utility is given by a concave utility function u(·) that maps her wealth
to utility, i.e., her utility for outcome (x, p) is u(vx− p). Concave utility functions are a standard
approach for modeling risk-aversion.1

A capacitated utility function is uC(z) = min(z, C) for a given C which we refer to as the capacity.
Intuitively, small C corresponds to severe risk aversion; large C corresponds to mild risk aversion;
and C = ∞ corresponds to risk neutrality. An agent views an auction as a deterministic rule that
maps a random source and the (possibly random) reports of other agents which we summarize by
π, and the report b of the agent, to an allocation and payment. We denote these coupled allocation
and payment rules as xπ(b) and pπ(b), respectively. The agent wishes to maximize her expected
utility which is given by Eπ[uC(vx

π(b) − pπ(b))], i.e., she is a von Neumann-Morgenstern utility
maximizer.

Incentives. A strategy profile of agents is s = (s1, . . . , sn) mapping values to reports. Such
a strategy profile is in Bayes-Nash equilibrium (BNE) if each agent i maximizes her utility by
reporting si(vi). I.e., for all i, vi, and z:

Eπ

[

u(vix
π
i (si(vi))− pπi (si(vi)))

]

≥ Eπ

[

u(vix
π
i (z) − pπi (z))

]

where π denotes the random bits accessed by the mechanism as well as the random inputs sj(vj)
for j 6= i and vj ∼ Fj . A mechanism is Bayesian incentive compatible (BIC) if truthtelling is a
Bayes-Nash equilibrium: for all i, vi, and z

Eπ

[

u(vix
π
i (vi)− pπi (vi))

]

≥ Eπ

[

u(vix
π
i (z)− pπi (z))

]

(IC)

where π denotes the random bits accessed by the mechanism as well as the random inputs vj ∼ Fj

for j 6= i.
We will consider only mechanisms where losers have no payments, and winners pay at most

their bids. These constraints imply ex post individual rationality (IR). Formulaically, for all i, vi,
and π, pπi (vi) ≤ vi when xπi (vi) = 1 and pπi (vi) = 0 when xπi (vi) = 0.

Auctions and Objectives. The revenue of an auction M is the total payment of all agents;
its expected revenue for implicit distribution F and Bayes-Nash equilibrium is denoted Rev(M) =
Eπ,v[

∑

i p
π
i (vi)]. The welfare of an auction M is the total utility of all participants including the

auctioneer; its expected welfare is denoted Welfare(M) = Rev(M)+Eπ,v[
∑

i u(vix
π
i (vi)− pπi (vi))].

Some examples of auctions are: the first-price auction (FPA) serves the agent with the highest
bid and charges her her bid; the second-price auction (SPA) serves the agent with the highest
bid and charges her the second-highest bid. The second price auction is incentive compatible
regardless of agents’ risk attitudes. The capacitated second-price auction (CSP) serves the agent
with the highest bid and charges her the maximum of her value less her capacity and the second
highest bid. The second-price auction for capacitated agents is incentive compatible for capacitated
agents because, relative to the second-price auction, the utility an agent receives for truthtelling is
unaffected and the utility she receives for any misreport is only (weakly) lower.

1There are other definitions of risk aversion; this one is the least controversial. See Mas-Colell et al. (1995) for a
thorough exposition of expected utility theory.

5



Two-Priced Auctions. The following class of auctions will be relevant for agents with capaci-
tated utility functions.

Definition 2.1. A mechanism M is two-priced if, whenever M serves an agent with capacity C
and value v, the agent’s payment is either v or v−C; and otherwise (when not served) her payment
is zero. Denote by xval(v) and xC(v) probability of paying v and v − C, respectively.

Note that from an agent’s perspective the outcome of a two-priced mechanism is fully described by
a xC and xval.

Auction Theory for Risk-neutral Agents. For risk neutral agents, i.e., with u(·) equal to
the identity function, only the probability of winning and expected payment are relevant. The
interim allocation rule and interim payment rule are given by the expectation of xπ and pπ over π
and denoted as x(b) = Eπ[x

π(b)] and p(b) = Eπ[p
π(b)], respectively (recall that π encodes the

randomization of the mechanism and the reports of other agents).
For risk-neutral agents, Myerson (1981) characterized interim allocation and payment rules

that arise in BNE and solved for the revenue optimal auction. These results are summarized in the
following theorem.

Theorem 2.1 (Myerson, 1981). For risk neutral bidders with valuations drawn independently and
identically from F ,

(a) (monotonicity) The allocation rule x(v) for each agent is monotone non-decreasing in v.

(b) (payment identity) The payment rule satisfies p(v) = vx(v)−
∫ v

0 x(z)dz.

(c) (virtual value) The ex ante expected payment of an agent is Ev[p(v)] = Ev[ϕ(v)x(v)] where

ϕ(v) = v − 1−F (v)
f(v) is the virtual value for value v.

(d) (optimality) When the distribution F is regular, i.e., ϕ(v) is monotone, the second-price
auction with reserve ϕ−1(0) is revenue-optimal.

The payment identity in part (b) implies the revenue equivalence between any two auctions with
the same BNE allocation rule.

A well-known result by Bulow and Klemperer shows that, in part (d) of Theorem 2.1, instead
of having a reserve price to make the second-price auction optimal, one may as well add in another
identical bidder to get at least as much revenue.

Theorem 2.2 (Bulow and Klemperer, 1996). For risk neutral bidders with valuations drawn i.i.d.
from a regular distribution, the revenue from the second-price auction with n+1 bidders is at least
that of the optimal auction for n bidders.

3 The Optimal Auctions

In this section we study the form of optimal mechanisms for capacitated agents. In Section 3.1,
we show that it is without loss of generality to consider two-priced auctions, and in Section 3.2 we
characterize the incentive constraints of two-priced auctions. In Section 3.3 we use this characteri-
zation to show that the optimal auction (in discrete type spaces) can be computed in polynomial
time in the number of types.
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3.1 Two-priced Auctions Are Optimal

Recall a two-priced auction is one where when any agent is served she is either charged her value or
her value minus her capacity. We show below that restricting our attention to two-priced auctions
is without loss for the objective of revenue.

Theorem 3.1. For any auction on capacitated agents there is a two-priced auction with no lower
revenue.

Proof. We prove this theorem in two steps. In the first step we show, quite simply, that if an agent
with a particular value received more wealth than C then we can truncate her wealth to C (by
charging her more). With her given value she is indifferent to this change, and for all other values
this change makes misreporting this value (weakly) less desirable. Therefore, such a change would
not induce misreporting and only (weakly) increases revenue. This first step gives a mechanism
wherein every agent’s wealth is in the linear part of her utility function. The second step is to show
that we can transform the distribution of wealth into a two point distribution. Whenever an agent
with value v is offered a price that results in a wealth w ∈ [0, C], we instead offer her a price of
v − C with probability w/C, and a price of v with the remaining probability. Both the expected
revenue and the utility of a truthful bidder is unchanged. The expected utility of other types to
misreport v, however, weakly decreases by the concavity of uC , because mixing over endpoints of
an interval on a concave function gives less value than mixing over internal points with the same
expectation.

3.2 Characterization of Two-Priced Auctions

In this section we characterize the incentive constraints of two-priced auctions. We focus on the
induced two-priced mechanism for a single agent given the randomization π of other agent values
and the mechanism. The interim two-priced allocation rule of this agent is denoted by x(v) =
xval(v) + xC(v).

Lemma 3.2. A mechanism with two-price allocation rule x = xval + xC is BIC if and only if for
all v and v+ such that v < v+ ≤ v + C,

xval(v)

C
≤

xC(v
+)− xC(v)

v+ − v
≤

x(v+)

C
. (1)

Equation (1) can be equivalently written as the following two linear constraints on xC , for all
v− ≤ v ≤ v+ ∈ [v − C, v + C]:

xC(v
+) ≥ xC(v) +

v+ − v

C
· xval(v), (2)

xC(v
−) ≥ xC(v)−

v − v−

C
· x(v). (3)

Equations (2) and (3) are illustrated in Figure 1. For a fixed v, (2) with v+ = v+C yields a lower
bounding line segment from (v, xC (v)) to (v + C, xC(v) + xval(v)), and (3) with v− = v − C gives
a lower bounding line segment from (v, xC(v)) to (v−C, xC(v)− x(v)). Note that (2) implies that
xC is monotone.

In the special case when xC is differentiable, by taking v+ approaching v in (1), we have
xval(v)

C
≤ x′C(v) ≤ x(v)

C
for all v. In general, we have the following condition in the integral form

(see Appendix A for a proof).
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Corollary 3.3. The allocation rule x = xval + xC of a BIC two-priced mechanism for all v < v+

satisfies:

∫ v+

v

xval(z)

C
dz ≤ xC(v

+)− xC(v) ≤

∫ v+

v

x(z)

C
dz. (4)

x(v)

xC(v)

v − C v v + C
b

b

b

xval(v)

x(v)

Figure 1: Fixing x(v) = xval(v) + xC(v), the dashed line between points (v − C, xC(v) − x(v)),
(v, xC(v)), and (v+C, xC(v)+xval(v)) (denoted by “•”) depicts the lower bounds from (2) and (3)
on xC for values in [v − C, v + C].

Importantly, the equilbrium characterization of two-priced mechanisms does not imply mono-
tonicity of the allocation rule x. This is in contrast with mechanisms for risk-neutral agents,
where incentive compatibility requires a monotone allocation rule (Theorem 2.1, part (a)). This
non-monotonicity is exhibited in the following example.

Example 3.1. There is a single-agent two-priced mechanism with a non-monotone allocation rule.
Our agent has two possible values v = 3 and v = 4, and capacity C of 2. We give a two price
mechanism. Recall that xC(v) is the probability with which the mechanism sells the item and
charges v − C; xval(v) is the probability with which the mechanism sells the item and charges v;
and x(v) = xC(v)+xval(v). The mechanism and its outcome are summarized in the following table.

v x xC xval

utility from
truthful reporting

utility from
misreporting

3 5/6 1/2 1/3 1 2/3

4 2/3 2/3 0 4/3 4/3

3.3 Optimal Auction Computation

Solving for the optimal mechanism is computationally tractable for any discrete (explicitly given)
type space T . Given a discrete valuation distribution on support T , one can use 2 |T | variables
to represent the allocation rule of any two-priced mechanism, and the expected revenue is a linear
sum of these variables. Lemma 3.2 shows that one can use O(|T |2) linear constraints to express
all BIC allocations, and hence the revenue optimization for a single bidder can be solved by a
O(|T |2)-sized linear program. Furthermore, using techniques developed by Cai et al. (2012) and
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Alaei et al. (2012), in particular the “token-passing” characterization of single-item auctions by
Alaei et al. (2012), we obtain:

Theorem 3.4. For n bidders with independent valuations with type spaces T1, · · · , Tn and capac-
ities C1, · · · , Cn, one can solve for the optimal single-item auction with a linear program of size

O

(

(

∑

i |Ti|
)2
)

.

4 An Upper Bound on Two-Priced Expected Payment

In this section we will prove an upper bound on the expected payment from any capacitated agent
in a two-priced mechanism. This upper bound is analogous in purpose to the identity between
expected risk-neutral payments and expected virtual surplus of Myerson (1981) from which optimal
auctions for risk-neutral agents are derived. We use this bound in Section 5.2 and Section 5.3 to
derive approximately optimal mechanisms.

As before, we focus on the induced two-priced mechanism for a single agent given the random-
ization π of other agent values and the mechanism. The expected payment of a bidder of value v
under allocation rule x(v) = xC(v)+xval(v) is p(v) = v ·xval(v)+(v−C)·xC(v) = v ·x(v)−C ·xC (v).

Recall from Theorem 2.1 that the (risk-neutral) virtual value for an agent with value drawn

from distribution F is ϕ(v) = v− 1−F (v)
f(v) and that the expected risk-neutral payment for allocation

rule x(·) is Ev[ϕ(v)x(v)]. Denote max(0, ϕ(v)) by ϕ+(v) and max(v − C, 0) by (v − C)+.

Theorem 4.1. For any agent with value v ∼ F , capacity C, and two-priced allocation rule x(v) =
xval(v) + xC(v),

Ev

[

p(v)
]

≤Ev

[

ϕ+(v) · x(v)
]

+Ev

[

ϕ+(v) · xC(v)
]

+Ev

[

(v − C)+ · xC(v)
]

.

Corollary 4.2. When bidders have regular distributions and a common capacity, either the risk-
neutral optimal auction or the capacitated second price auction (whichever has higher revenue) gives
a 3-approximation to the optimal revenue for capacitated agents.

Proof. For each of the three parts of the revenue upper bound of Theorem 4.1, there is a simple
auction that optimizes the expectation of the part across all agents. For the first two parts, the
allocation rules across agents (both for x(·) and xC(·)) are feasible. When the distributions of agent
values are regular (i.e., the virtual value functions are monotone), the risk-neutral revenue-optimal
auction optimizes virtual surplus across all feasible allocations (i.e., expected virtual value of the
agent served); therefore, its expected revenue upper bounds the first and second parts of the bound
in Theorem 4.1. The revenue of the third part is again the expectation of a monotone function
(in this case (v − C)+) times the service probability. The auction that serves the agent with the
highest (positive) “value minus capacity” (and charges the winner the maximum of her “minimum
winning bid,” i.e., the second-price payment rule, and her “value minus capacity”) optimizes such
an expression over all feasible allocations; therefore, its revenue upper bounds this third part of the
bound in Theorem 4.1. When capacities are identical, this auction is the capacitated second price
auction.
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Before proving Theorem 4.1, we give two examples. The first shows that the gap between the
revenue of the capacitated second-price auction and the risk-neutral revenue-optimal auction (i.e.,
the two auctions from Corollary 4.2) can be arbitrarily large. This means that there is no hope
that an auction for risk-neutral agents always obtains a good revenue for risk-averse agents. The
second example shows that even when all values are bounded from above by the capacity (and
therefore, capacities are never binding in a risk-neutral auction) an auction for risk-averse agents
can still take advantage of risk aversion to generate higher revenue. Consequently, the fact that we
have two risk-neutral revenue terms in the bound of Theorem 4.1 is necessary (as the “value minus
capacity” term is zero in this case).

Example 4.1. The equal revenue distribution on interval [1, h] has distribution function F (z) =
1 − 1/z (with a point mass at h). The distribution gets its name because such an agent would
accept any offer price of p with probability 1/p and generate an expected revenue of one. With one
such agent the optimal risk-neutral revenue is one. Of course, an agent with capacity C = 1 would
happily pay her value minus her capacity to win all the time (i.e., x(v) = xC(v) = 1). The revenue
of this auction is E[v]− 1 = lnh. For large h, this is unboundedly larger than the revenue we can
obtain from a risk-neutral agent with the same distribution.

Example 4.2. The revenue from a two-priced mechanism can be better than the optimal risk-
neutral revenue even when all values are no more than the capacity. Consider selling to an agent
with capacity of C = 1000 and value drawn from the equal revenue distribution from Example 4.1
with h = 1000.

The following two-priced rule is BIC and generates revenue of approximately 1.55 when selling
to such a bidder. Let xC(v) =

0.6
1000 (v − 1), x(v) = min(xC(v) + 0.6, 1), and xval(v) = x(v)− xC(v)

(shown in Figure 2). Recall that the expected payment from an agent with value v can be written as
vx(v) − CxC(v); for small values, this will be approximately 0.6; for large values this will increase
to 400. The expected revenue is

∫ 1000
1

(

z · x(z)− 1000 xC(z)
)

f(z)dz + 1
1000 (1000 · xval(1000)) ≈

1.15 + 0.4 ≈ 1.55, an improvement over the optimal risk-neutral revenue of 1.

x(v)

xC(v)

C = 1000

1

Value

Figure 2: With C = 1000 and values from the equal revenue distribution on [1, 1000], this two-priced
mechanism is BIC and achieves 1.55 times the revenue of the optimal risk-neutral mechanism.

In the remainder of this section we instantiate the following outline for the proof of Theorem 4.1.
First, we transform any given two-priced allocation rule x = xval + xC into a new two-priced rule
x̄(v) = x̄C(v) + x̄val(v) (for which the expected payment is p̄(v) = vx̄(v) − Cx̄C(v)). While this
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transformation may violate some incentive constraints (from Lemma 3.2), it enforces convexity of
x̄C(v) on v ∈ [0, C] and (weakly) improves revenue. Second, we derive a simple upper bound on the
payment rule p̄(·). Finally, we use the enforced convexity property of x̄C(·) and the revenue upper
bound to partition the expected payment Ev[p̄(v)] by the three terms that can each be attained by
simple mechanisms.

4.1 Two-Priced Allocation Construction

We now construct a two-priced allocation rule x̄ = x̄val + x̄C from x = xval + xC for which (a)
revenue is improved, i.e., p̄(v) ≥ p(v), and (b) the probability the agent pays her value minus
capacity, x̄C(v), is convex for v ∈ [0, C]. In fact, given xval, x̄C is the smallest function for which
IC constraint (2) holds; and in the special case when xval is monotone, the left-hand side of (4) is
tight for x̄C on [0, C]. Other incentive constraints may be violated by x̄, but we use it only as an
upper bound for revenue.

Definition 4.1 (x̄). We define x̄ = x̄C + x̄val as follows:

(a) x̄val(v) = xval(v);

(b) Let r(v) be 1
C
supz≤v xval(z), and let

x̄C(v) =

{

∫ v

0 r(y) dy, v ∈ [0, C];
xC(v), v > C.

(5)

Lemma 4.3 (Properties of x̄).

(a) On v ∈ [0, C], x̄C(·) is a convex, monotone increasing function.

(b) On all v, x̄C(v) ≤ xC(v).

(c) The incentive constraint from the left-hand side of (4) holds for x̄C :
1
C

∫ v+

v
x̄val(z) dz ≤

x̄C(v
+)− x̄C(v) for all v < v+.

(d) On all v, x̄C(v) ≤ xC(v), x̄(v) ≤ x(v), and p̄(v) ≥ p(v).

The proof of part (b) is technical, and we give a sketch here. Recall that, for each v, the IC
constraint (2) gives a linear constraint lower bounding xC(v

+) for every v+ > v. If one decreases
xC(v), the lower bound it imposes on xC(v

+) is simply “pulled down” and is less binding. The
definition of x̄C simply lands x̄C(v) on the most binding lower bound, and therefore not only makes
x̄C(v) at most xC(v), but also lowers the linear constraint that v imposes on larger values. If the
number of values is countable or if xval is piecewise constant, the lemma is easy to see by induction.
A full proof for the general case of part (b), along with the proofs of the other more direct parts of
Lemma 4.3, is given in Appendix B.
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4.2 Payment Upper Bound

Recall that p̄(v) is the expected payment corresponding with two-priced allocation rule x̄(v). We
now give an upper bound on p̄(v).

Lemma 4.4. The payment p̄(v) for v and two-priced rule x̄(v) satisfies

p̄(v) ≤ vx̄(v)−

∫ v

0
x̄(z) dz +

∫ v

0
x̄C(z) dz. (6)

Proof. View a two-priced mechanism x̄ = x̄val + x̄C as charging v with probability x̄(v) and giving
a rebate of C with probability x̄C(v). We bound this rebate as follows (which proves the lemma):

C · x̄C(v) ≥ C · x̄C(0) +

∫ v

0
x̄val(z) dz

≥

∫ v

0
x̄(z) dz −

∫ v

0
x̄C(z) dz.

The first inequality is from part (c) of Lemma 4.3. The second inequality is from the definition of
x̄C(0) = 0 in (5) and x̄val(v) = x̄(v)− x̄C(v). See Figure 3 for an illustration.

4.3 Three-part Payment Decomposition

Below, we bound p̄(·) (and hence p(·)) in terms of the expected payment of three natural mecha-
nisms. As seen geometrically in Figure 4, the bound given in Lemma 4.4 can be broken into two
parts: the area above x̄(·), and the area below x̄C(·). We refer to the former as p̄I(·); we further
split the latter quantity into two parts: p̄II(·), the area corresponding to v ∈ [0, C], and p̄III(·), that
corresponding to v ∈ [C, v]. We define these quantities formally below:

x̄(v)

x̄C(v)

v − C v
Value

(a) Shaded region is the expected payment from an
agent of value v.

x̄(x)

x̄C(x)

v
Value

(b) Shaded region upper bounds expected payment
from an agent with value v, shown in Lemma 4.4.

Figure 3
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p̄I(v) = x̄(v)v −

∫ v

0
x̄(z) dz, (7)

p̄II(v) =

∫ min{v,C}

0
x̄C(z) dz (8)

p̄III(v) =







0, v ≤ C;
∫ v

C
x̄C(z) dz, v > C.

(9)

Proof of Theorem 4.1. We now bound the revenue from each of the three parts of the payment
decomposition. These bounds, combined with part (d) of Lemma 4.3 and Lemma 4.4, immediately
give Theorem 4.1.

Part 1. Ev[p̄
I(v)] = Ev[ϕ(v) · x̄(v)] ≤ Ev[ϕ

+(v) · x(v)].

Formulaically, p̄I(·) corresponds to the risk-neutral payment identity for x̄(·) as specified by
part (b) of Theorem 2.1; by part (c) of Theorem 2.1, in expectation over v, this payment is
equal to the expected virtual surplus Ev[ϕ(v) · x̄(v)].

2 The inequality follows as terms ϕ(v)
and x̄(v) in this expectation are point-wise upper bounded by ϕ+(v) = max(ϕ(v), 0) and
x(v), respectively, the latter by part (d) of Lemma 4.3.

Part 2. Ev[p̄
II(v)] ≤ Ev[ϕ(v) · x̄C(v)] ≤ Ev[ϕ

+(v) · xC(v)].

By definition of p̄II(·) in (8), if the statement of the lemma holds for v = C it holds for
v > C; so we argue it only for v ∈ [0, C]. Formulaically, with respect to a risk-neutral agent
with allocation rule x̄C(·), the risk-neutral payment is v · x̄C(v)−

∫ v

0 x̄C(z) dz, the surplus is
v · x̄C(v), and the risk-neutral agent’s utility (the difference between the surplus and payment)
is
∫ v

0 x̄C(z) dz = p̄II(v). Convexity of x̄C(·), from part (a) of Lemma 4.3, implies that the
risk-neutral payment is at least half the surplus, and so is at least the risk-neutral utility.
The lemma follows, then, by the same argument as in the previous part.

2Note: This equality does not require monotonicity of the allocation rule x̄(·); as long as part (b) of Theorem 2.1
formulaically holds, part (c) follows from integration by parts.

p̄I

p̄II p̄III

x̄

x̄C

vC
Value

Figure 4: Breakdown of the expected payment upper bound in a two-priced auction.
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Part 3. Ev[p̄
III(v)] ≤ Ev[(v − C)+ · x̄C(v)] = Ev[(v −C)+ · xC(v)].

The statement is trivial for v ≤ C so assume v ≥ C. By definition x̄C(v) = xC(v) for
v > C. By (2), xC(·) is monotone non-decreasing. Hence, for v > C, p̄III(v) =

∫ v

C
xC(z) dz ≤

∫ v

C
xC(v) dz = (v−C) · xC(v). Plugging in (v−C)+ = max(v−C, 0) and taking expectation

over v, we obtain the bound.

5 Approximation Mechanisms and a Payment Identity

In this section we first give a payment identity for Bayes-Nash equilibria in mechanisms that charge
agents a deterministic amount upon winning (and zero upon losing). Such one-priced payment
schemes are not optimal for capacitated agents; however, we will show that they are approximately
optimal. When agents are symmetric (with identical distribution and capacity) we use this payment
identity to prove that the first-price auction is approximately optimal. When agents are asymmetric
we give a simple direct-revelation one-priced mechanism that is BIC and approximately optimal.

5.1 A One-price Payment Identity

For risk-neutral agents, the Bayes-Nash equilibrium conditions entail a payment identity: given an
interim allocation rule, the payment rule is fixed (Theorem 2.1, part (b)). For risk-averse agents
there is no such payment identity: there are mechanisms with the identical BNE allocation rules
but distinct BNE payment rules. We restrict attention to auctions wherein an agent’s payment is
a deterministic function of her value (if she wins) and zero if she loses. We call these one-priced
mechanisms; for these mechanisms there is a (partial) payment identity.

Payment identities are an interim phenomenon. We consider a single agent and the induced al-
location rule she faces from a Bayesian incentive compatible auction (or, by the revelation principle,
any BNE of any mechanism). This allocation rule internalizes randomization in the environment
and the auction, and specifies the agents’ probability of winning, x(v), as a function of her value.
Given allocation rule x(v), the risk-neutral expected payment is pRN(v) = v · x(v) −

∫ v

0 x(z) dz
(Theorem 2.1, part (b)). Given an allocation rule x(v), a one-priced mechanism with payment rule
p(v) would charge the agent p(v)/x(v) upon winning and zero otherwise (for an expected payment
of p(v)). Define pVC(v) = (v − C) · x(v) which, intuitively, gives a lower bound on a capacitated
agent’s willingness to trade-off decreased probability of winning for a cheaper price.

Theorem 5.1. An allocation rule x and payment rule p are the BNE of a one-priced mechanism
if and only if (a) x is monotone non-decreasing and (b) if p(v) ≥ pVC(v) for all v then p = pC is
defined as

pC(0) = 0, (10)

pC(v) = max

(

pVC(v), sup
v−<v

{

pC(v−) + (pRN(v)− pRN(v−))
}

)

. (11)

Moreover, if x is strictly increasing then p(v) ≥ pVC(v) for all v and p = pC is the unique equilibrium
payment rule.
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The payment rule should be thought of in terms of two “regimes”: when pC = pVC, and when
pC > pVC, corresponding to the first and second terms in the max argument of (11) respectively. In
the latter regime, (11) necessitates that d

dvp
C(v) = d

dvp
RN(v); for nearby such points v and v+ǫ, the

v− involved in the supremum will be the same, and thus pC(v + ǫ)− pC(v) = pRN(v+ ǫ)− pRN(v).
The proof is relegated to Appendix C. The main intuition for this characterization is that

risk-neutral payments are “memoryless” in the following sense. Suppose we fix pRN(v) for a v and
ignore the incentive of an agent with value v+ > v to prefer reporting v− < v, then the risk-neutral

payment for all v+ > v is pRN(v+) = p(v) +
∫ v+

v
(x(v+)− x(z)) dz. This memorylessness is simply

the manifestation of the fact that the risk-neutral payment identity imposes local constraints on
the derivatives of the payment, i.e., d

dvp
RN(v) = v · d

dvx(v).
There is a simple algorithm for constructing the risk-averse payment rule pC from the risk-

neutral payment rule pRN (for the same allocation rule x).

0. For v < C, pC(v) = pRN(v).

(a) The pC(v) = pRN(v) identity continues until the value v′ where pC(v′) = pVC(v′), and pC(v)
switches to follow pVC(v).

(b) When v increases to the value v′′ where d
dvp

RN(v′′) = dpVC

dv (v′′) then pC(v) switches to follow

pRN(v) shifted up by the difference pVC(v′′) − pRN(v′′) (i.e., its derivative d
dvp

C(v) follows
d
dvp

RN(v)).

(c) Repeat this process from Step (a).

Lemma 5.2. The one-priced BIC allocation rule x and payment rule pC satisfy the following

(a) For all v, pC(v) ≥ max(pRN(v), pVC(v)).

(b) Both pC(v) and pC(v)/x(v) are monotone non-decreasing.

The proof of part (b) is contained in the proof of Lemma C.3 in Appendix C, and part (a)
follows directly from equations (10) and (11).

5.2 Approximate Optimality of First-price Auction

We show herein that for agents with a common capacity and values drawn i.i.d. from a continuous,
regular distribution F with strictly positive density the first-price auction is approximately optimal.

It is easy to solve for a symmetric equilibrium in the first-price auction with identical agents.
First, guess that in BNE the agent with the highest value wins. When the agents are i.i.d. draws
from distribution F , the implied allocation rule is x(v) = Fn−1(v). Theorem 5.1 then gives the
necessary equilibrium payment rule pC(v) from which the bid function bC(v) = pC(v)/x(v) can be
calculated. We verify that the initial guess is correct as Lemma 5.2 implies that the bid function
is symmetric and monotone. There is no other symmetric equilibrium.3

3Any other symmetric equilibrum must have an allocation rule that is increasing but not always strictly so. For
this to occur the bid function must not be strictly increasing implying a point mass in the distribution of bids. Of
course, a point mass in a symmetric equilibrium bid function implies that a tie is not a measure zero event. Any
agent has a best response to such an equilibrium of bidding just higher than this pointmass so at essentially the same
payment, she always “wins” the tie.
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Proposition 5.3. The first-price auction for identical (capacity and value distribution) agents has
a unique symmetric BNE wherein the highest valued agent wins.

The expected revenue at this equilibrium is nEv[p
C(v)]. Lemma 5.2 implies that pC is at least

pRN and pVC.

Corollary 5.4. The expected revenue of the first-price auction for identical (capacity and value
distribution) agents is at least that of the capacitated second-price auction and at least that of the
second-price auction.

Our main theorem then follows by combining Corollary 5.4 with the revenue bound in Theorem 4.1
and Theorem 2.2 by Bulow and Klemperer (1996).

Theorem 5.5. For n ≥ 2 agents with common capacity and values drawn i.i.d. from a regular
distribution, the revenue in the first price auction (FPA) in the symmetric Bayes-Nash equilibrium
is a 5-approximation to the optimal revenue.

Proof. An immediate consequence of Theorem 2.2 is that for n ≥ 2 risk-neutral, regular, i.i.d.
bidders, the second-price auction extracts a revenue that is at least half the optimal revenue;
hence, by Corollary 4.2, the optimal revenue for capacitated bidders by any BIC mechanism is
at most four times the second-price revenue plus the capacitated second-price revenue. Since the
first-price auction revenue in BNE for capacitated agents is at least the capacitated second-price
revenue and the second-price revenue, the first-price revenue is a 5-approximation to the optimal
revenue.4

5.3 Approximate Optimality of One-Price Auctions

We now consider the case of asymmetric value distributions and capacities. In such settings the
highest-bid-wins first-price auction does not have a symmetric equilbria and arguing revenue bounds
for it is difficult. Nonetheless, we can give asymmetric one-priced revelation mechanisms that are
BIC and approximately optimal. With respect to Example 4.2 in Section 4 which shows that
the option to charge two possible prices from a given type may be necessary for optimal revenue
extraction, this result shows that charging two prices over charging one price does not confer a
significant advantage.

Theorem 5.6. For n (non-identical) agents, their capacities C1, . . . , Cn, and regular value distri-
butions F1, . . . , Fn, there is a one-priced BIC mechanism whose revenue is at least one third of the
optimal (two-priced) revenue.

Proof. Recall from Theorem 4.1 that either the risk-neutral optimal revenue or Ev1,...,vn [max{(vi−
Ci)+}] is at least one third of the optimal revenue. We apply Theorem 5.1 to two monotone
allocation rules:

(a) the interim allocation rule of the risk-neutral optimal auction, and

(b) the interim allocation rule specified by: serve agent i that maximizes vi − Ci, if positive;
otherwise, serve nobody.

4In fact, the Bulow and Klemperer (1996) result shows that the second-price auction is asymptotically optimal so
for large n this bound can be asymptotically improved to three.
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As both allocations are monotone, we apply Theorem 5.1 to obtain two single-priced BIC mech-
anisms. By Lemma 5.2, the expected revenue of the first mechanism is at least the risk neutral
optimal revenue, and the expected revenue of the second mechanism is at least Ev1,...,vn [max{(vi −
Ci)+}]. The theorem immediately follows for the auction with the higher expected revenue.

Although Theorem 5.6 is stated as an existential result, the two one-priced mechanisms in
the proof can be described analytically using the algorithm following Theorem 5.1 for calculating
the capacitated BIC payment rule. The interim allocation rules are straightforward (the first:
xi(vi) =

∏

j 6=i Fj(ϕ
−1
j (ϕi(vi))), and the second: xi(vi) =

∏

j 6=i Fj(vi −Ci +Cj)), and from these we

can solve for pCi

i (v).

6 Conclusions

For the purpose of keeping the exposition simple, we have applied our analysis only to single-item
auctions. Our techniques, however, as they focus on analyzing and bounding revenue of a single
agent for a given allocation rule, generalize easily to structurally rich environments. Notice that the
main theorems of Sections 3, 4, and the first part of Section 5 do not rely on any assumptions on
the feasibility constraint except for downward closure, i.e., that it is feasible to change an allocation
by withholding service to an agent who was formerly being served.

For example, our prior-independent 5-approximation result generalizes to symmetric feasibility
constraints such as position auctions. A position auction environment is given by a decreasing
sequence of weights α1, . . . , αn and the first-price position auction assigns the agents to these
positions greedily by bid. With probability αi the agent in position i receives an item and is
charged her bid; otherwise she is not charged. (These position auctions have been used to model
pay-per-click auctions for selling advertisements on search engines where αi is the probability that
an advertiser gets clicked on when her ad is shown in the ith position on the search results page.)
For agents with identical capacities and value distributions, the first-price position auction where
the bottom half of the agents are always rejected is a 5-approximation to the revenue-optimal
position auction (that may potentially match all the agents to slots).

Our one- versus two-price result generalizes to asymmetric capacities, asymmetric distributions,
and asymmetric downward-closed feasibility constraints. A downward-closed feasibility constraint
is given by a set system which specifies which subset of agents can be simultaneously served.
Downward-closure requires that any subset of a feasible set is feasible. A simple one-priced mech-
anism is a 3-approximation to the optimal mechanism in such an environment. The mechanism
is whichever has higher revenue of the standard (risk neutral) revenue-optimal mechanism (which
serves the subset of agents with the highest virtual surplus, i.e., sum of virtual values) and the
one-priced revelation mechanism that serves the set of agents S that maximizes

∑

i∈S(vi − Ci)
+

subject to feasibility.
A main direction for future work is to relax some of the assumptions of our model. Our

approach to optimizing over mechanisms for risk-averse agents relies on (a) the simple model of
risk aversion given by capacitated utilities and (b) that losers neither make (i.e., ex post individual
rationality) nor receive payments (i.e., no bribes). These restrictions are fundamental for obtaining
linear incentive compatibility constraints. Of great interest in future study is relaxation of these
assumptions.

There is a relatively well-behaved class of risk attitudes known as constant absolute risk aversion
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where the utility function is parameterized by risk parameter R as uR(w) =
1
R
(1 − e−Rw). These

model the setting in which a bidder’s risk aversion is independent of wealth, and hence bidders
view a lottery over payments for an item the same no matter their valuations. Matthews (1984)
exploits this and derives the optimal auction for such risk attitudes. A first step in extending our
results to more interesting risk attitudes would be to consider such risk preferences.

Our analytical (and computational) solution to the optimal auction problem for agents with
capacitated utilities requires an ex post individual rationality constraint on the mechanism that is
standard in algorithmic mechanism design. This constraint requires that an agent who loses the
auction cannot be charged. While such a constraint is natural in many settings, it is with loss and,
in fact, ill motivated for settings with risk-averse agents. One of the most standard mechanisms
for agents with risk-averse preferences is the “insurance mechanism” where an agent who may face
some large liability with small probability will prefer to pay a constant insurance fee so that the
insurance agency will cover the large liability in the event that it is incurred. This mechanism is
not ex post individually rational. Does the first-price auction (which is ex post individual rational)
approximate the optimal interim individually rational mechanism?
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A Proofs from Section 3

Lemma 3.2 (Restatement). A mechanism with two-price allocation rule x = xval − xC is BIC
if and only if for all v and v+ such that v < v+ ≤ v + C,

xval(v)

C
≤

xC(v
+)− xC(v)

v+ − v
≤

x(v+)

C
. (1)

Proof of Lemma 3.2. Consider an agent and fix two possible values of the agent v ≤ v+ ≤ v +
C. The utility for truthtelling with value v is C · xC(v) in a two-price auction. The utility for
misreporting v+ from value v is xval(v

+) · (v − v+) + xC(v
+) · (C + v − v+): when the mechanism

sells and charges v+, the agent’s utility is v−v+; when the mechanism sells and charges v+−C, her
utility is uC(C+ v− v+) = C+ v− v+ (since v < v+). Likewise, the utility for misreporting v from
true value v+ is xval(v) · (v

+ − v) + xC(v) · C. Note that here when the mechanism charges v −C,
the utility of the agent is C because the wealth C − v + v+ is more than C; when the mechanism
charges v, her utility is v+ − v because we assumed v+ ≤ v + C.

An agent with valuation v (or v+) would not misreport v+ (or v) if and only if

xC(v) · C ≥ xval(v
+) · (v − v+) + xC(v

+) · (C + v − v+); (12)

xC(v
+) · C ≥ xval(v) · (v

+ − v) + xC(v) · C. (13)

Now the right side of (1) follows from (12) and the left side follows from (13).
When v+ > v+C, the agent with value v certainly has no incentive to misreport v+, since any

outcome results in non-positive utility. Alternatively, the agent with value v+ will derive utility
C · x(v) from misreporting v and thus will misreport if and only if x(v) > xC(v

+). Substituting
v + C for v+ in equation (1) gives x(v) ≤ xC(v + C), and taking this for intermediate points
between v+C and v+ gives monotonicity of xC(v) over [v+C, v+]. Combining these gives x(v) ≤
xC(v + C) ≤ xC(v) and hence v+ will not misreport v.
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Corollary 3.3 (Restatement): The allocation rules xC and xval of a BIC two-priced mechanism
satisfies that for all v < v+,

∫ v+

v

xval(z)

C
dz ≤ xC(v

+)− xC(v) ≤

∫ v+

v

x(z)

C
dz. (4)

Proof of Corollary 3.3. Without loss of generality, suppose v+ ≤ v+C (the statement then follows
for higher v+ by induction). Define function

x̄C(z) = xC(v) +

∫ z

v

supy′∈[v,y] xval(y
′)

C
dy, ∀z ∈ [v, v+],

then x̄C(z) ≥ xC(v) +
∫ z

v

xval(y)
C

dy and hence

∫ z

v

xval(y)

C
dy ≤ x̄C(z) − xC(v).

By the argument in the proof of Lemma 4.3,part (b), we have x̄C(z) ≤ xC(z), for all z. This gives
the left side of (4). The other side is proven similarly.

B Proofs from Section 4

Definition 4.1 (Restatement). We define x̄ = x̄C + x̄val as follows:

(a) x̄val(v) = xval(v);

(b) Let r(v) be 1
C
supz≤v xval(z), and let

x̄C(v) =

{

∫ v

0 r(y) dy, v ∈ [0, C];
xC(v), v > C.

(5)

Lemma 4.3 (Restatement).

(a) On v ∈ [0, C], x̄C(·) is a convex, monotone increasing function.

(b) On all v, x̄C(v) ≤ xC(v).

(c) The incentive constraint from the left-hand side of (4) holds for x̄C :
∫ v+

v
x̄val(z)dz ≤ x̄C(v

+)−
x̄C(v) for all v < v+.

(d) On all v, x̄C(v) ≤ xC(v), x̄(v) ≤ x(v), and p̄(v) ≥ p(v).

Proof of Lemma 4.3.

(a) On [0, C], x̄C(v) is the integral of a monotone, non-negative function.
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(b) The statement holds directly from the definition for v > C; therefore, fix v ≤ C in the
argument below.

Since r(v) is an increasing function of v, it is Riemann integrable (and not only Lebesgue
integrable).

Fixing v, we show that, given any ǫ ≤ 0, x̄C(v) ≤ xC(v) + ǫ. Fix an integer N > v/ǫ, and
let ∆ be v/N < ǫ. Consider Riemann sum S =

∑N
j=1∆ · r(ξj), where each ξj is an arbitrary

point in [(j − 1)∆, j∆].5 We will also denote by S(k) =
∑k

j=1∆ · r(ξj), k ≤ N , the partial
sum of the first k terms. Since x̄C(v) = lim∆→0 S, it suffices to show that for all ∆ < ǫ,
S ≤ xC(v) + ǫ. In order to show this, we define a piecewise linear function y. On [0,∆], y
is 0, and then on interval [j∆, (j + 1)∆], y grows at a rate r((j − 1)∆). Intuitively, y “lags
behind” xC by an interval ∆ and we will show it lower bounds xC and upper bounds S + ǫ.
Note that since r is an increasing function, y is convex.

We first show y(v) ≤ xC(v). We will show by induction on j that y(z) ≤ xC(z) for all
z ∈ [0, j∆]. Since y is 0 on [0,∆], the base case j = 1 is trivial. Suppose we have shown
y(z) ≤ xC(z) for all z ∈ [0, (j − 1)∆], let us consider the interval [(j − 1)∆, j∆]. Let
z∗ be argmaxz≤(j−1)∆ xval(z).

6 By the induction hypothesis, y(z∗) ≤ xC(z
∗). Recall that

z∗ ≤ z ≤ C. By the BIC condition (2), for all z ≥ z∗,

xC(z) ≥ xC(z
∗) +

xval(z
∗)

C
(z − z∗).

On the other hand, by definition, r is constant on [z∗, z], and the derivative of y is no larger
than r(z∗) on [z∗, z]. Hence for all z ≤ j∆,

y(z) ≤ y(z∗) +
xval(z

∗)

C
(z − z∗)

≤ xC(z
∗) +

xval(z
∗)

C
(z − z∗) ≤ xC(z).

This completes the induction and shows y(z) ≤ xC(v) for all z ∈ [0, v].

Now we show S ≤ y(v)+ǫ. Note that since r(z) ≤ 1 for all z, S ≤ S(N−1)+∆ < S(N−1)+ǫ.
We will show by induction that S(N−1) ≤ y(v). Our induction hypothesis is S(j−1) ≤ y(j∆).
The base case for j = 1 is obvious as S(0) = y(∆) = 0.

S(j) = S(j − 1) +∆ · r(ξj)

≤ y(j) + ∆ · r(j∆)

= y(j + 1).

In the inequality we used the induction hypothesis and the monotonicity of r. The last
equality is by definition of y.

This completes the proof of part (b).

5Obviously S depends both on ∆ and the choice of ξj ’s. For cleanness of notation we omit this dependence and
do not write S∆,ξ.

6Here we assumed that supz<(j−1)∆ xval(z) can be attained by z∗, which is certainly the case when xval is contin-
uous. It is straightforward to see though that we do not need such an assumption. It suffices to choose z∗ such that
xval(z

∗) is close enough to r((j − 1)∆). The proof goes almost without change, except with an even smaller choice
of ∆.
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(c) For v ≤ v+ ≤ C, by definition of x̄C ,

x̄C(v
+)− x̄C(v) =

∫ v+

v

r(z) dz ≥

∫ v+

v

xval(z)

C
dz.

For C ≤ v ≤ v+, x̄C and x̄val are equal to x̄C and x̄val on [v, v+], and the inequality follows
from Corollary 3.3. For v ≤ C and v+ ≥ C, we have

x̄C(v
+)− x̄C(v) = [x̄C(v

+)− x̄C(C)] + [x̄C(C)− x̄C(v)]

≥

∫ v+

C

xval(z)

C
dz +

∫ C

v

xval(z)

C
dz

=

∫ v+

v

xval(z)

C
dz.

(d) The first part, x̄C(v) ≤ xC(v), is from part (b) of the lemma and the definition of x̄C(v) =
xC(v) on v > C. The second part, x̄(v) ≤ x(v), follows from the definition of x̄val(v) = xval(v),
the first part, and the definition of x(v) = xval(v)+xC(v). The third part, p̄(v) ≥ p(v), follows
because lowering xC(v) to x̄C(v) on v ∈ [0, C] foregoes payment of v−C which is non-positive
(for v ∈ [0, C]).

C Proofs from Section 5

Theorem 5.1 (Restatement). An allocation rule x and payment rule p are the BNE of a one-
priced mechanism if and only if (a) x is monotone non-decreasing and (b) if p(v) ≥ pVC(v) for all
v then p = pC is defined as

pC(0) = 0, (10)

pC(v) = max

(

pVC(v), sup
v−<v

{

pC(v−) + (pRN(v)− pRN(v−))
}

)

. (11)

Moreover, if x is strictly increasing then p(v) ≥ pVC(v) for all v and p = pC is the unique equilibrium
payment rule.

The proof follows from a few basic conditions. First, with strictly monotone allocation rule x,
the payment upon winning must be at least v − C; otherwise, a bidder would wish to overbid and
see a higher chance of winning, with no decrease in utility on winning. Second, when the payment
on winning is strictly greater than v −C, the bidder is effectively risk-neutral and the risk-neutral
payment identity must hold locally. Third, when an agent is paying exactly v−C on winning, they
are capacitated when considering underbidding, but risk-neutral when considering overbidding. As

a result, at such a point, pC must be at least as steep as pRN, i.e., if d
dvp

RN(v) > dpVC

dv (v), pC will
increase above pVC, at which point it must follow the behavior of pRN.

Theorem 5.1 follows from the following three lemmas which show the necessity of monotonicity,
the (partial) necessity of the payment identity, and then the sufficiency of monotonicity and the
payment identity.
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Lemma C.1. If x and p are the BNE of a one-priced mechanism, then x is monotone non-
decreasing.

Lemma C.1 shows that monotonicity of the allocation rule is necessary for BNE in a one-priced
mechanism. Compare this to Example 3.1 where we exhibited a non-one-priced mechanisms that
was not monotone. Because the utilities may be capacitated, the standard risk-neutral monotonicity
argument; which involves writing the IC constraints for a high-valued agent reporting low and a
low-valued agent reporting high, adding, and canceling payments; does not work.

Lemma C.2. If x and p are the BNE of a one-priced mechanism and p(v) ≥ pVC(v) for all v, then
p = pC (as defined in Theorem 5.1); moreover, if x is strictly monotone then p(v) ≥ pVC(v) for all
v.

From Lemma C.2 we see that one-priced mechanisms almost have a payment identity. It is
obvious that a payment identity does not generically hold as a capacitated agent with value v
is indifferent between payments less than v − C; therefore, the agent’s incentives does not pin
down the payment rule if the payment rule ever results in a wealth for the agent of more than
C. Nonetheless, the lemma shows that this is the only thing that could lead to a multiplicity of
payment rules. Additionally, the lemma shows that if x is strictly monotone, then these sorts of
payment rules cannot arise.

Lemma C.3. If allocation rule x is monotone non-decreasing and payment rule p = pC (as defined
in Theorem 5.1), then they are the Bayes-Nash equilibrium of a one-priced mechanism.

The following claim and notational definition will be used throughout the proofs below.

Claim C.4. Compared to the wealth of type v on truthtelling, when type v+ > v misreports v she
obtains strictly more wealth (and is more capacity constrained) and when type v− < v misreports v
she obtains strictly less wealth (and is less capacity constrained) and if p(v) ≥ pVC(v) then type v−

is strictly risk neutral on reporting v.

Definition C.1. Denote the utility for type v misreporting v′ for the same implicit allocation and
payment rules by UC(v, v′) and URN(v, v′) for risk-averse and risk-neutral agents, respectively.

Proof of Lemma C.1. We prove via contradiction. Assume that x is not monotone, and hence there
is a pair of values, v− < v+, for which x(v−) > x(v+). We will consider this in three cases: (1)
when a type of v− is capacitated upon truthfully reporting and winning, and when a type of v− is
strictly in the risk-neutral section of her utility upon winning and a type of v+ is either in the (2)
capacitated or (3) strictly risk-neutral section of her utility upon winning.

(a) (v− capacitated). If v− is capacitated upon winning, then v+ will also be capacitated upon
winning and misreporting v− (Claim C.4). A capacitated agent is already receiving the
highest utility possible upon winning. Therefore, v+ strictly prefers misreporting v− as such
a report (strictly) increases probability of winning and (weakly) increases utility from winning.

(b) (v− risk-neutral, v+ capacitated). We split this case into two subcases depending on whether
the agent with type v− is capacitated with misreport v+.
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(a) (v− capacitated when misreporting v+). As the truthtelling v+ type is also capacitated
(by assumption of this case), the utilities of these two scenarios are the same, i.e.,

UC(v−, v+) = UC(v+, v+). (14)

Since type v− truthfully reporting v− is strictly uncapacitated, if her value was increased
she would feel a change in utility (for the same report); therefore, type v+ reporting v−

has strictly more utility (Claim C.4), i.e.,

UC(v+, v−) > UC(v−, v−). (15)

Combining (14) and (15) we arrive at the contradiction that type v+ strictly prefers to
report v−, i.e.,

UC(v+, v−) > UC(v+, v+).

(b) (v− risk-neutral when misreporting v+). First, it cannot be that the bidder of type v+

is capacitated for both reports v+ and v− as, otherwise, misreporting v− gives the same
utility upon winning but strictly higher probability of winning. Therefore, both types
are risk neutral when reporting v−. Type v− is risk-neutral for both reports so she
feels the discount in payment from reporting v+ instead of v− linearly; type v+ feels the
discount less as she is capacitated at v+. On the other hand, v+ has a higher value for
service and therefore feels the higher service probability from reporting v− over v+ more
than v−. Consequently, if v− prefers reporting v− to v+, then so must v+ (strictly).

(c) (v− risk-neutral, v+ risk-neutral). First, note that the price upon winning must be higher
when reporting v− than v+, i.e., p(v−)/x(v−) > p(v+)/x(v+); otherwise a bidder of type
v+ would always prefer to report v− for the higher utility upon winning and higher chance
of winning. Thus, a bidder of type v+ must be risk-neutral upon underreporting v− and
winning; furthermore, risk-neutrality of v+ for reporting v+ implies the risk-neutrality of v−

for reporting v+ (Claim C.4). As both v+ and v− are risk-neutral for reporting either of v−

or v+, the standard monotonicity argument for risk-neutral agents applies.

Thus, for x to be in BNE it must be monotone non-decreasing.

Proof of Lemma C.2. First we show that if x is strictly monotone then p(v) ≥ pVC(v) for all v.
If p(v) < pVC(v) then type v on truthtelling obtains a wealth w strictly larger than C. Type
v− = v − ǫ, for ǫ ∈ (0, w − C), would also be capacitated when reporting v; therefore, by strict
monotonicity of x such a overreport strictly increases her utility and BIC is violated.

The following two claims give the necessary condition.

pC(v) ≥ pC(v−) + (pRN(v)− pRN(v−)), ∀v− < v (16)

pC(v) ≤ sup
v−<v

{

pC(v−) + (pRN(v) − pRN(v−))
}

, ∀v s.t. pC(v) > pVC(v). (17)

Equation (16) is easy to show. Since pC(v) ≥ pVC(v), the wealth of any type v− when winning
is at most C, and strictly smaller than C if overbidding. In other words, when overbidding, a bidder
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only uses the linear part of her utility function and therefore can be seen as risk neutral. Equation
(16) then follows directly from the standard argument for risk neutral agents.7

Equation (17) would be easy to show if pC is continuous: for all v where pC(v) > pVC(v), there
is a neighborhood (v − ǫ, v] such that deviating on this interval only incurs the linear part of the
utility function and the agent is effectively risk neutral. We give the following general proof that
deals with discontinuity and includes continuous cases as well.

To show (17), it suffices to show that, for each v where pC(v) > pVC(v), for any ǫ > 0,
pC(v) < pC(v−) + (pRN(v) − pRN(v−) + ǫ for some v− < v. Consider any v− > v − ǫ

2 . Since
pC(v−) ≥ pVC(v−) = (v− − C)x(v−) > (v − ǫ

2 − C)x(v−), the utility for v to misreport v−, i.e.,
UC(v, v−) is not much smaller than if the agent is risk neutral:

URN(v, v−)− UC(v, v−) <
ǫ

2
x(v−).

The following derivation, starting with the BIC condition, gives the desired bound:

0 ≤ UC(v, v) − uC(v, v
−) < uC(v, v) − URN(v, v−) +

ǫ

2
x(v−)

= (x(v)v − pC(v))− (x(v−)v − pC(v−)) +
ǫ

2
x(v−)

= (x(v) − x(v−))v − (pC(v)− pC(v−)) +
ǫ

2
x(v−)

≤ pRN(v)− pRN(v−) + (v − v−)x(v) − (pC(v)− pC(v−)) +
ǫ

2
x(v−)

≤ pRN(v)− pRN(v−)− (pC(v)− pC(v−)) + ǫ.

The first equality holds because pC(v) > pVC(v); the second to last inequality uses the definition of
risk neutral payments (Theorem 2.1, part (b)), and the last holds because x(v−) < x(v) ≤ 1.

Proof of Lemma C.3. The proof proceeds in three steps. First, we show that an agent with value
v does not want to misreport a higher value v+. Second, we show that the expected payment on
winning, i.e., pC(v)/x(v) is monotone in v. Finally, we show that the agent with value v does not
want to misreport a lower value v−. Recall in the subsequent discussion that pRN is the risk-neutral
expected payment for allocation rule x (from Theorem 2.1, part (b)).

(a) (Type v misreporting v+.) This argument pieces together two simple observations. First,
Claim C.4 and the fact that pC ≥ pVC imply that v is risk-neutral upon reporting v+. Second,
by definition of pC , the difference in a capacitated agent’s payments given by pC(v+)− pC(v)
is at least that for a risk neutral agent given by pRN(v+)− pRN(v). The risk-neutral agent’s
utility is linear and she prefers reporting v to v+. As the risk-averse agent’s utility is also linear
for payments in the given range and because the difference in payments is only increased, then
the risk-averse agent must also prefer reporting v to v+.

(b) (Monotonicity of pC/x.) The monotonicity of pC

x
, which is part (b) of Lemma 5.2, will be

used in the next case (and some applications of Theorem 5.1). We consider v and v+ and

argue that pC(v)
x(v) ≤ pC(v+)

x(v+) . First, suppose that the wealth upon winning of an agent with

7For a risk neutral agent, the risk neutral payment maintains the least difference in payment to prevent all types
from overbidding.
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value v is C, i.e., pC(v) = pVC(v). If pC(v+) = pVC(v+) as well, then by definition of pVC (by
pVC(v)
x(v) = v − C) monotonicity of pC/x holds for these points. If pC is higher than pVC at v+

then this only improves pC/x at v+. Second, suppose that the wealth of an agent with value
v is strictly larger than C, meaning this agent’s utility increases with wealth. The allocation

rule x(·) is weakly monotone (Lemma C.1), suppose for a contradiction that pC(v)
x(v) > pC(v+)

x(v+)

on v < v+. Then the agent with value v can pretend to have value v+, obtain at least
the same probability of winning, and obtain strictly lower payment. This increase in wealth
is strictly desired, and therefore, this agent strictly prefers misreport v+. Combined with
part (a), above, which argued that a low valued agent would not prefer to pretend to have a
higher value, this is a contradiction.

(c) (Type v misreporting v−.) If pC(v) = pVC(v), then paying less on winning does not translate
into extra utility, and hence by the monotonicity of pC/x, the agent would never misreport.

We thus focus then on the case that pC(v) > pVC(v). By the monotonicity of pC/x, there
is a point v0 < v such that for every value v− between v0 and v, if an agent with value v
reported v−, she would still be in the risk-neutral section of her utility function. Specifically,
this entails that ∀v− such that v0 < v− < v, pC(v−)/x(v−) ≥ v −C. Consider such a v0 and
any such v−. For any such point, pC(v−)/x(v−) > v− −C, and hence a bidder with value v−

would also be strictly in the risk-neutral part of her utility function upon winning.

For every such point, by our formulation in (11), pC(v) − pC(v−) = pRN(v) − pRN(v). As a
result, since she is effectively risk-neutral in this situation, she cannot wish to misreport v−;
otherwise, the combination of x and pRN would not be BIC for risk-neutral agents.

For any v− ≤ v0, the wealth on winning for a bidder with value v would increase, but only
into the capacitated section of her utility function, hence gaining no utility on winning, but
losing out on a chance of winning thanks to the weak monotonicity of x. Hence, she would
never prefer to bid v− over bidding v0. Combining this argument with the above argument,
our agent with value v does not prefer to misreport any v− < v.
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