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Abstract

Crémer and McLean [1985] showed that, when buyers’ valuations are drawn from a corre-
lated distribution, an auction with full knowledge on the distribution can extract the full social
surplus. We study whether this phenomenon persists when the auctioneer has only incomplete
knowledge of the distribution, represented by a finite family of candidate distributions, and has
sample access to the real distribution. We show that the naive approach which uses samples to
distinguish candidate distributions may fail, whereas an extended version of the Crémer-McLean
auction simultaneously extracts full social surplus under each candidate distribution. With an
algebraic argument, we give a tight bound on the number of samples needed by this auction,
which is the difference between the number of candidate distributions and the dimension of the
linear space they span.
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1 Introduction

Revenue maximization, a.k.a. optimal auction design, is one of the most studied topic in the
literature of mechanism design. The foundational work of Myerson [14] gave the optimal auction for
selling a single item when the participating agents’ values for the item are each drawn independently
from distributions that are known to the auctioneer. As noted by Myerson himself, the independence
of the values is crucial for his auction’s optimality. Crémer and McLean [6] showed that, for
correlated buyers, with a mild condition on the joint distribution, there is in general a dominant
strategy incentive compatible auction that extracts full social surplus. This means that, the item is
always sold to the bidder with the highest value, but the utility of each bidder is zero in expectation,
and all the value created by the auction is extracted by the payments made to the auctioneer.

Both Myerson’s and Crémer and McLean’s auctions are subject to the criticism of the “Wilson’s
principle” [20], which proposes that auction design should rely as little as possible on the details
of the valuation distributions, since these distributional prior knowledge can be expensive, if not
impossible, to acquire. Recently, several prior-independent auctions were studied [e.g. 8, 19, 10].
These auctions greatly reduce the amount or precision of the knowledge needed by the auctioneer
on the prior distribution, while guaranteeing nearly optimal performance against the fully knowl-
edgeable optimal auction. However, they were all designed for independent value settings. In this
work, we pursue prior-independent auction design for correlated buyers.

Typically, a prior-independent auction is an auction that is guaranteed to have nearly optimal
performance on a family of distributions. To be more precise, for each distribution of a given
family, the auction extracts nearly as much revenue as the optimal auction designed specifically for
that distribution. For example, Dhangwatnotai et al. [8] showed that, with one sample from the
underlying distribution for each bidder, a single auction can extract a revenue nearly optimal, and
the family of distributions considered is that of regular distributions.

Can one use a similar method to emulate Crémer and McLean [6]’s auction for correlated
settings, perhaps using samples to weaken the requirement on one’s precise knowledge on the value
distributions? We give an affirmative answer to this question.

Theorem 1. Given any finite family D of distributions satisfying the condition of Crémer and
McLean [6], a single auction with sample access to the underlying distribution can extract full
social surplus under each distribution in D, where the number of samples needed is one plus |D| (the
number of distributions in D), minus the dimension of the linear space spanned by the distributions
in D.

For example, when all distributions in the family are linearly independent, the auction needs
only one sample. We also show that the number of samples needed is tight (Proposition 3).

Main Difficulties. Unlike the independent value settings, for correlated bidders, the optimal
auctions that guarantee bidders non-negative utilities only in expectation (i.e., interim individually
rational) may extract a revenue much higher than any auction which guarantee non-negative utilities
with probability one (i.e., ex post individually rational). In general, the social surplus can be
extracted only with the former looser constraint on the auction. However, the expectation of
a bidder’s utility here is taken over the distribution of the other bidders’ values, on which the
auctioneer has no accurate knowledge. Therefore, the disadvantage imposed by the inaccuracy of
the auctioneer’s knowledge is considerably greater here than in the independent value settings. We
allow ourselves a finite family of distributions to partly compensate for this disadvantage.
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Since we consider a finite family of distributions, a naive way to make use of the sample access
is trying to distinguish the distributions by what one sees in the samples, and then running the
auction optimal for the distribution which most likely produces the samples. In Section 3, we show
that this approach can be very inefficient in its use of the samples.

Theorem 2. For any positive integer k, there exist two distributions for two bidders which satisfy
the Crémer-McLean condition and which, with high probabilities, cannot be distinguished by k sam-
ples. Moreover, no single auction extracts any constant fraction of the optimal revenue under both
distributions.

In contrast, the auction in Theorem 1 needs only one sample for two such distributions.
Moreover, even when the auctioneer has some confidence on his guess of the underlying distri-

bution and runs an auction that is interim invidually rational for that distribution, the auction may
run into trouble in the event that his guess is wrong (such an event is particularly likely if the only
source of confidence is the samples). This is because the auction may turn out to be not invidiaully
rational on the actual distribution, and participants may see negative utilities in expectation. In
this case, one will have to make additional assumptions on bidders’ behavior in such scenarios for
any meaningful analysis. Our approach avoids this problem: as long as the actual distribution is
in the family D, our auction will be individually rational.

Our Techniques. Our auction is an extension of the auction by Crémer and McLean [6] (called
the CM-auction in the sequel). That auction first runs a second price auction on the reported
values, and then charges each bidder a payment (or pays her a reward) which is determined solely
by the other bidders’ bids. Since this payment does not depend on the bidder’s own strategy, it
does not alter the incentive structure of the auction. These payments can be seen as the outcome of
a lottery, whose randomness comes only from the other bidders’ values. The lotteries are set up so
that each bidder, conditional on any of her own values, makes an expected payment in the lottery
that is equal to her expected utility in the second price auction. In the independent value settings,
this is not possible, because the outcome of the lottery does not depend on the bidder’s own value,
whereas her expected utility in the second price auction does. In the case of correlated values, this
becomes possible if there is enough “richness” or “variance” in the conditional distributions of the
other bidders’ values as the bidder’s own value varies. This “richness” is shown by Crémer and
McLean to be the linear independence of the conditional distributions.

In our auction, we also first run a second price, and then decide for each bidder the outcome
of her lottery without using her own value. The difference of our auction from the CM-auction is
that this lottery outcome will depend not only on the other bidders’ values but also on the samples
from the distribution. Ideally, even though the bidder’s expected utility in the second price auction
changes with both her own value and the underlying distribution, we hope to orchestrate the
change in the expected lottery outcome so as to match the utility change. This requires linear
independence of all the distributions over the other bidders’ values and the samples, given each
candidate distribution and the bidder’s own value. The main technical difficulty of this work is to
give a tight bound on the number of samples needed for this linear independence. As we show in
the proof of Theorem 1, it boils down to showing a property for an object in algebraic geometry
known as the Veronese variety.

Structure of the paper. In Section 3 we show the limit of the naive approach by giving a proof
for Theorem 2. In Section 4 we prove Theorem 1, first describing our auction and then showing
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the bound on the number of samples for its revenue guarantee.

1.1 Other Related Works

In correlated value settings with a known distribution, Crémer and McLean [6] gives a dominant
strategy incentive compatible, interim individually rational auction that extracts full social surplus,
under a certain condition (1) on the distribution. Our work is an extension of this auction. The
CM auction was extended by McAfee and Reny [13] and Rahman [16] to continuous type spaces.

Another line of work studies the optimal auction for the same setting (with known prior dis-
tributions), but under the stronger constraint of ex post individual rationality. Papadimitiou and
Pierrakos [15] showed that calculating the optimal deterministic auction under this requirement is
NP-hard, whereas Dobzinski et al. [9] showed that the optimal randomized auction can be com-
puted in time polynomial in the size of the distribution. Ronen [17] developed a 2-approximation
for the optimal revenue where the computation cost does not grow with the number of bidders,
and this approach was extended by Dobzinski et al. [9] and Chen et al. [5] for better approximation
ratios. These auctions are particularly simple in form, and we will use the auction by Ronen in our
proof of Theorem 2. For the more general matroid settings, Roughgarden and Talgam-Cohen [18]
characterized the optimal auction under various assumptions on the distribution, and Li [12] showed
that a generalized VCG auction with conditional monopoly reserve prices gives e-approximation to
the optimal revenue for distributions having a correlated version of monotone hazard rate.

There have been various studies on prior-independent revenue maximization [e.g. 8, 7, 19, 10],
although they all assume independent value distributions. The most relevant to this work is Dhang-
watnotai et al. [8]’s single-sampling auction, which showed that with one sample from each bidder’s
valuation distribution, the VCG auction with the samples as reserve prices gives a 4-approximation
to the optimal revenue, when the distributions are regular. As an extention, Roughgarden and
Talgam-Cohen [18] gave a single-sampling mechanism for the more general interdependent value
settings under various assumptions, although the benchmark is the optimal revenue under ex post
individual rationality. Recently, Chawla et al. [4] gave a prior-independent mechanism optimizing
a non-revenue objective, i.e., that of minimizing makespan for scheduling problems.

Online pricing [e.g. 1, 2, 3] is another setting where one has to maximize revenue but faces
an unknown underlying distribution, and where one can observe values drawn from it (or partial
information, e.g. by observing the buyer’s decision to take or leave a certain price). The difference
between this and our “batch” setting is that the observations come over time, and one needs to
perform well not only in the last stage, but throughout the stages on average. Also, the buyers are
typically assumed to have values (or types) drawn from the same distribution, as opposed to from
a correlated distribution we consider here.

2 Preliminaries

Auctions, Incentive Compatibility and Invidual Rationality. In this paper we consider the
problem of auctioning one item to n bidders whose private valuations v1, . . . , vn are drawn from an
unknown correlated distribution D. Let Ti be the support of vi, i.e., Ti = {vi | ∃v−i, D(vi, v−i) >
0}. Let T be the support of D. In this work we consider only discrete distributions with finite
supports.

By the revelation principle, it is without loss of generality to consider auctions of the form
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that solicit bidders’ values and map them to an allocation and a payment for each bidder. The
allocation xi(v1, . . . , vn) ∈ [0, 1] denotes the probability with which agent i is allocated the item
at the reported value profile (v1, . . . , vn), and the payment pi(v1, . . . , vn) indicates the amount of
money paid by agent i at the valuation profile. Feasibility of a single-item auction requires that∑

i xi(v1, . . . , vn) ≤ 1, ∀v1, . . . , vn.
The utility ui of a bidder with value vi at an outcome xi and pi is vixi − pi. An auction is said

to be dominant strategy incentive compatible (DSIC), if for all i, vi, v
′
i and v−i,

vixi(vi, v−i)− pi(vi, v−i) ≥ vixi(v′i, v−i)− pi(v′i, v−i).

An auction is said to be ex post individually rational (IR) if, for all i, vi, v−i,

vixi(vi, v−i)− pi(vi, v−i) ≥ 0.

An auction is said to be interim individually rational if, for all i and vi,

Ev−i

[
vixi(vi, v−i)− pi(vi, v−i) | vi

]
≥ 0,

where v−i is drawn from the conditional distribution given vi.
The revenue of an auction is the sum of expected payments it collects from all bidders. In this

paper we consider maximizing revenue extractable by auctions subject to dominant strategy IC
condition and ex post or interim IR condition.

Notations for Distributions. We will assume that the auctioneer is guaranteed that the valu-
ation distribution D is from a family D of distributions, D = {D1, · · · , Dm}. 1 For example, the
auctioneer may have an accurate knowledge of the distribution D on the value profiles (v1, . . . , vn),
but without knowing the mapping between the identities of the bidders in the auction and the co-
ordinates in the valuation profile. In this case, the family D will consist of at most n! distributions,
each of which is formed by performing a permutation on the coordinates in the profiles in D.

There are multiple ways to represent a distribution. In Section 3 we represent a distribution
for n bidders as an n-dimensional tensor. In particular, for two bidders, a distribution D is a
|T1| × |T2| matrix, with the entry D(v1, v2) denoting the probability of the occurrence of (v1, v2).
In Section 4, we will represent a distribution by a |T |-dimensional vector, with D(v1, . . . , vn) being
the probability of the occurrence of valuation profile (v1, . . . , vn). When T =

∏
i Ti, the latter is

simply the vectorization of the former representation.
The probability of a valuation profile v−i conditioning on bidder i’s value being vi is D(v−i | vi).

We use Di,vi to denote the conditional distribution on v−i given vi. We represent it as the |T−i|-
dimensional vector, where Di,vi,v−i is D(v−i | vi).

Optimal Auctions For A Known Distribution. We will need two existing results on revenue
maximization with correlated bidders, under constraints of interim IR and ex post IR, respectively.

Crémer and McLean [6] showed that, under a fairly lenient condition on the value distribution,
the optimal mechanism under DSIC and interim IR can extract the full social surplus. In other
words, the auction maximizes the social welfare and always allocates the item to the bidder with
the highest value, whereas in expectation every bidder’s utility is zero.

1Without loss of generality we assume these distributions have the same support.
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Definition 1. A valuation distribution D is said to satisfy the Crémer-McLean condition if, for
each bidder i, the |Ti| vectors {Di,vi}vi∈Ti are linearly independent.

Theorem 3 (6). In a single item auction where the valuation distribution satisfies the Crémer-
McLean condition, there is an interim IR, DSIC auction that extracts the full social surplus.

We will call the auction in Theorem 3 the CM auction.
Ronen [17] studied an DSIC, ex post IR lookahead auction that 2-approximates the optimal

revenue. The auction first solicits all values, then singles out the highest bidder, and runs the
optimal auction for this bidder, with the value distribution conditioning on all other bidders’ values
and the fact that her value is above all others’.

Theorem 4 (17). The lookahead auction is DSIC, ex post IR and extracts at least half of the
optimal revenue.

The Equal Revenue Distribution. In several examples we will make use of the following equal
revenue distribution (truncated at h): the valuation v takes on integers between 1 and h, and the
probability that v ≥ k is equal to 1

k . The equal revenue distribution has the property that, the
expectation of the value is Ω(log h), which grows unboundedly as h grows large, but the optimal
revenue one can extract from it in a single-agent setting is 1.

Kronecker Products. Notations in Section 4 will be greatly shortened by the use of Kronecker
products on matrices (and vectors). The Kronecker product of matrices A = (aij) ∈ Rm×n and
B = (bij) ∈ Rp×q is the mp× nq block matrix

A⊗B =


a11B · · · a1nB

...
. . .

...
am1B · · · amnB

 .
Kronecker products are bilinear and associative, but in general are not commutative. We will

use (⊗A)k to denote the Krocker product of k copies of A. When performing Kronecker products
on an m-dimensional vector, we will treat it as an m× 1 matrix. The following lemma is not hard
to verify.

Lemma 5. Consider a set of linearly independent vectors S = {v1, . . . vm} and, for each i =
1, . . . ,m, a set Ti of linearly independent vectors. The set of vectors ∪i=1,··· ,m{u⊗vi}u∈Ti are linearly
independent. In particular, for any positive integer k, the set of mk vectors {u1 ⊗ . . . ⊗ uk}ui∈S,
are linearly independent.

3 The Limit of the Naive Approach

The most naive approach given sample accesses is to use the samples to distinguish distributions in
the given family D of distributions, and then run an optimal auction for the identified distribution.
However, even with the knowledge of D, the auctioneer may still need a large number of samples
to even distinguish the distributions with constant confidence of being right, let alone tailor an
auction for the identified distribution. Consider the following example.
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Example 1. Fix a small positive real number ε < 1. Consider two bidders whose values are
generated by the following process: two values are independently drawn from the equal revenue
distribution, then with probability 1− ε, the two values are randomly assigned to the two bidders;
with probability ε, the higher of the two values is assigned to bidder 1, and the lower to bidder 2.
Call the resulting correlated distribution DA. Define another distribution DB by exactly the same
procedure but flipping the identity of the two bidders.

Proposition 1. It takes Ω(1/ε2) samples to correctly distinguish DA and DB in Example 1 with
constant probability.

Proof. We can simulate a biased coin with DA as follows: draw a pair of values (v1, v2) from DA,
and if v1 > v2, return Head; if v1 < v2, return Tail; if v1 = v2, return Head and Tail with probability
1
2 each. It is not hard to see that the resulting distribution over Heads and Tails is that of an ε-
biased coin in favor of Head. The same simulation using DB will give a distribution of an ε-biased
coin in favor of Tail. By standard information theoretic argument [see, e.g. Theorem 6.1 in 11], we
know that it takes Ω(ε2) flips of a coin to distinguish an ε-biased coin in favor of Heads or Tails.
Therefore one needs at least as many samples to distinguish DA and DB.

It is not hard to verify that DA and DB satisfy the Crémer-McLean condition, and one can
extract full social surplus which is Ω(log h). Now we show that, without being able to distinguish
the two, one auction cannot simultaneously be interim IR and approximates the optimal revenue
within a constant factor under both distributions.

Theorem 6. There is no auction that is interim IR and gets more than O(1) revenue under both
distributions in Example 1 .

Together with Proposition 1, this theorem implies Theorem 2. Before proving the theorem, we
first give a characterization of dominant strategy IC mechanisms, which can be easily shown by
standard arguments. We omit its proof.

Lemma 7. Given a value distribution, any two dominant strategy IC auctions with the same
allocation rule differ from each other only by a payment from each bidder i that depends only
on v−i.

2

For a fixed allocation rule, we call an auction canonical if it has the allocation rule, is dominant
strategy IC, ex post IR and if any bidder having a value lowest in her type space always has
zero utility. Given Lemma 7, we can describe any dominant strategy IC auction by the difference
between it and the canonical one.

Corollary 1. Any dominant strategy IC auction can be fully described in a standard form by its
allocation rule and n vectors L1 ∈ R|T−1|, · · · , Ln ∈ R|T−n|. To run this auction, one first runs the
canonical auction with the same allocation rule, and then charges each bidder i the amount Li(v−i)
when the other bidders bid v−i.

Proof of Theorem 6. Fix a dominant strategy IC auction that is interim IR under both DA and DB

in Example 1. Let L1 ∈ R|T2| and L2 ∈ R|T1| be the vectors of payments describing the auction’s
payments in addition to the canonical auction. Let ~d denote the equal revenue distribution trun-
cated at h, i.e., ~d = [12 ,

1
6 , · · · ,

1
(h−1)h ,

1
h ]>. Deviating from the rest of the paper, in this proof we

2We allow the payment to be negative, in which case we pay the bidder.
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will use a h × h matrix D to represent a joint distribution for the two bidders, with D(v1, v2)
representing the probability of the profile (v1, v2). The distribution where each bidder’s value is
drawn independently from the equal revenue distribution is then represented by the symmetric
rank-one matrix A = ~d~d>. Let B be the upper triangle matrix whose diagonal elements are half of
A’s, and whose elements above the diagonal are identical with A. Then A = B +B>. Also, DA is
(1− ε)A+ 2εB> = A+ ε(B> −B), and DB is A+ ε(B −B>).

We consider the revenue our auction gets from bidder 1 under DA. It first gets the revenue
as in the canonical auction, and then in addition, it gets ~1> · [A + ε(B> − B)]L1, where ~1> is the
h-dimensional all-one row vector. Under DB, this additional revenue is ~1> · [A + ε(B − B>)]L1.
The sum of these two terms is ~1> ·AL1, which we show has to be small.

Let r1(M) denote the first row of a matrix M . Recall that the entries of r1(A + ε(B> − B))
correspond to the probabilities in DA of the value profiles where v1 = 1. By interim IR, we have

r1(A+ ε(B> −B)) · L1 = r1(A)L1 + r1(B
> −B) · L1 ≤ 1.

Similarly, for DB we have

r1(A)L1 + r1(B −B>) · L1 ≤ 1.

Adding the two inequalities, we get r1(A)L1 ≤ 2. Now recall that A represents the independent
distribution, and r1(A) is simply 1

2
~d>. Hence ~d> · L1 ≤ 4. The other rows of A are also scaled

copies of ~d, and the scaling coefficients sum up to 1. Hence, ~1>AL1 ≤ 4. Therefore, in addition
to the canonical auction, the total sum of our auction’s extra revenue from bidder 1 in the two
distributions is bounded by 4. The same argument works for bidder 2 as well. In other words, our
auction cannot extract substantially more revenue than the canonical auction for both distributions
simultaneously. Therefore, to finish the proof, we only need to show that the canonical auction also
extracts only a small revenue.

To show this, we invoke the lookahead auction. By Theorem 4, the revenue of any DSIC, ex
post IR auction, including that of the canonical auction, is bounded by twice the revenue of the
lookahead auction. Recall that the lookahead auction for two bidders uses the lower bidder’s value
to set a conditionally optimal price for the higher bidder. Given any distribution represented by a
h × h matrix D, when bidder 1’s value being v1 and bidder 2’s value is higher, the optimal price
for bidder 2 is determined by the part of v1-th row of D to the right of the diagonal element. If we
set a price of p1,v1 ≥ v1 in this scenario, in expectation we collect a revenue of

p1,v1
∑

v≥p1,v1

D(v1, v).

We can do this for every v1, and symmetrically for bidder 2 using the columns of D. The revenue
of the lookahead auction can be expressed as

max
p1,1≥1,
···

p1,h≥h.

h∑
v1=1

p1,v1
∑

v≥p1,v1

D(v1, v) + max
p2,1>1,
···

p2,h−1>h−1.

h∑
v2=1

p2,v2
∑

v≥p2,v2

D(v, v2).

Now we substitute D by DA = A+ ε(B> −B). It is not hard to verify that the diagonal elements
of DA are the same as A, and for any v1 > v2, D

A(v1, v2) = (1 + ε)A(v1, v2), and for any v1 < v2,
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DA(v1, v2) = (1 − ε)A(v1, v2). Therefore, the revenue of the lookahead auction is upper bounded
by (1 + ε) times the following quantity:

max
p1,1≥1,
···

p1,h≥h.

h∑
v1=1

p1,v1
∑

v≥p1,v1

A(v1, v) + max
p2,1>1,
···

p2,h−1>h−1.

h∑
v2=1

p2,v2
∑

v≥p2,v2

A(v, v2).

This quantity, however, is exactly the revenue of the lookahead auction for the independent
distribution A, which in turn is known to be no more than 2 (since the revenue of Myerson’s
optimal auction is no more than 2; another way to see this is that for independent distributions,
the optimal revenue for two bidders cannot be greater than the sum of optimal revenue extractable
from each alone). This completes the proof.

4 The Power of Auctions with Internal Samples

In contrast to the limit we have shown for the naive approach, we consider an extension of the
CM-auction in this section and prove Theorem 1.

Definition 2. The CM auction with samples works as follows:

1. Run the second price auction, which allocates the item to the highest bidder and charges her
a payment equal to the second highest bid.

2. Draw k valuation profiles s1, . . . , sk, each independently from the underlying distribution.

3. For each bidder, including those who do not win the item, charge her or pay her an amount
of money that is a function of the other bidders bids v−i and the samples s1, . . . , sk. These
functions and k, the number of samples needed, are to be specified later.

The difference between the CM auction with samples and the CM auction is the sampling
procedure and the dependence of the lottery outcome on the samples. We now discuss setting up
the lotteries outcomes in Step (3), and the number of samples we need. The former is an extension
of the CM auction, whereas the latter involves nontrivial algebraic investigations.

4.1 Lottery Outcomes From Solving Linear Systems

The construction of the lotteries in Step (3) of 2 aims at extracting from bidder i the utility she
would get in a pure second price auction, no matter what distribution we are under. This boils
down to solving a linear system, as is the case in Crémer and McLean [6].

For each bidder i, we construct a vector uSPAi in R|Ti|×m, where uSPAi,vi,j
is the expected utility

of bidder i in the second price auction under distribution Dj and conditioning on that bidder i
has value vi. (Recall that m is the number of distributions in D.) We draw k samples s1, . . . , sk
from the underlying distribution, where each sample sj is a profile of values (sj1, . . . , sjn). We
would like to decide on an amount to pay or charge bidder i given v−i and s1, . . . , sk. So we use a
vector Li ∈ R|T−i|×|T |k to denote these quantities, where Li,v−i,s1,...,sk is the amount of money we
charge or pay to bidder i, when the other bidders bid v−i and when the samples are s1, . . . , sk. To
compute the expected payment under L, we need a distribution over the events that v−i, s1, . . . , sk
occur. Importantly, this distribution varies with both the underlying distribution Dj and bidder i’s
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own value vi. Therefore we have |Ti| · m vectors F vi,j
i in R|T−i|×|T |k , where F vi,j

i,v−i,s1,...,sk
is the

probability that the bidders other than i bid v−i and that the k samples are s1, . . . , sk, under the
joint distribution Dj and conditioning on bidder i’s own value being vi. The expected payment
that bidder i with value vi makes in Step (3) under distribution Dj is then equal to F vi,j

i · Li.

Proposition 2. The CM auction with samples is DSIC. In addition, if, given a family of distri-
butions D = {D1, · · · , Dm}, for each bidder i, the system of linear equations

F vi,j
i · Li = uSPAi , ∀vi ∈ Ti, j ∈ [m] (1)

has a solution L∗i , then using L∗i for bidder i in Step (3) of 2 makes the auction interim IR and
extracts full social surplus under each distribution Dj ∈ D.

Proof. The second price auction itself is DSIC, and in Step (3) of 2, the extra payment (or award)
the bidder makes (or receives) is not affected by her own bid, the auction remains DSIC.

Now fixing any distribution Dj ∈ D, and conditioning on bidder i having value vi, the bidder’s
utility from the first two steps will be her conditional utility in a second price auction, i.e., uSPAi,vi,j

.

Her extra payment in Step (3) will be in expectation equal to F vi,j
i · L∗i , which by definition of L∗i

is equal to uSPAi,vi,j
. This shows that the bidder has expected utility zero no matter which Dj ∈ D it

is and no matter what her own value is. Therefore the auction is interim IR. As the item is always
allocated to the highest bidder, the auction extracts the full social surplus.

We now investigate conditions that allow us to solve the linear systems F vi,j
i · Li = uSPAi .

From this point on we will focus on the problem on a fixed bidder, and will drop the subscripts i.
In general, there are no linear constraints governing the entries of the vector uSPA, because it is
calculated with both the probabilities in the distribution and the magnitude of the valuations. This
means that, to be able to solve the linear equations, in general we need {F vi,j}vi,j to be linearly
independent.

By the independence of each sampling, we have

F vi,j
v−i,s1,...,sk

= Dj
vi(v−i) ·D

j(s1) · · ·Dj(sk),

(recall that Dj
vi(v−i) is the conditional probaiblity Dj(v−i | vi)), therefore

F vi,j = Dj
vi ⊗ (⊗Dj)k. (2)

By the bilinearity of Kronecker products, in order to have {F vi,j}vi∈Ti to be linearly independent
even for a fixed j, we need {Dj

vi}vi to be linearly independent, which amounts to the Crémer-McLean
condition (1) on Dj .

From this point on we will assume that each Dj ∈ D satisfies the Crémer-McLean condition,
and we look at the number of samples needed to make {F vi,j}vi,j linearly independent.

4.2 Upper Bounds on the Number of Samples Needed

We next show the main theorem in this section.

Theorem 8. If each distribution Dj ∈ D satisfies the Crémer-McLean condition, and if the m
vectors {Dj} spans a linear space of dimension d, then with k = m − d + 1 samples, the set of
vectors {F vi,j

i }vi,j are linearly independent, for each bidder i.

9



With Proposition 2, we immediately have the following corollary.

Corollary 2. Under the condition in Theorem 8, the CM auction with k = m − d + 1 samples is
DSIC, interim IR, and extracts full social surplus under each distribution Dj ∈ D.

Proof of Theorem 8. By (2) and Lemma 5, as we have the Crémer-McLean condition, it suffices to
show that the m vectors {(⊗Dj)k}j are linearly independent.

Let {B1, · · · , Bd} be a basis of the linear space spanned by {Dj}j . Then for each j, we can

write Dj as a linear sum of these vectors: Dj =
∑d

`=1 αj`B`. Since each Dj is a distribution, its
entries sum to one. Therefore, no two αj and αj′ are scalar copies of each other, i.e., there are no
j 6= j′ such that αj` = ζαj′` for each `, for some ζ.

We consider the Kronecker product (⊗Dj)k. By bilinearity,

(
⊗Dj

)k
=

⊗ d∑
`=1

αj`B`

k

=
∑

`1+···+`d=k,
`1,··· ,`d≥0

α`1
j1α

`2
j2 . . . α

`d
jdC`1,··· ,`d ,

where C`1,··· ,`d is the sum of terms that are Kronecker products of B1, · · · , Bd, such that in each
term B1 appears `1 times, and so on. (since taking kronecker product is not commutative, these
products do not have to be the same.) for example, when d is two, C1,2 = B1 ⊗ B2 ⊗ B2 + B2 ⊗
B1 ⊗ B2 + B2 ⊗ B2 ⊗ B1. by lemma 5, the set of vectors {B`1 ⊗ · · · ⊗ B`k}`1,··· ,`k∈[d] are linearly
independent, and therefore so are the C`1,...,`d ’s.

now each (⊗Dj)k is expressed as a linear combination of linearly independent vectors, with the
linear coefficient on C`1,··· ,`d being the product α`1

j1 . . . α
`d
jd. to show linear independence of the set of

vectors {(⊗Dj)k}j , we only need to show that the set of m linear coefficients as vectors are linearly
independent.

the vector (α`1
j1 . . . α

`d
jd)`1+···+`d=k is the image of the vector ~αj = (αj1, . . . , αjd) under the map-

ping ν : rd → r(d+k−1
d−1 ) which evaluates all the k-th degree monomials in r[x1, . . . , xd] at a point in

rd. we now show that these m images ν(~α1), . . . , ν(~αm) are linearly independent when k = m−d+1.

we will show that for every j, there exists a linear form on r(d+k−1
d−1 ) that vanishes at ν(~αj′) for

all j′ 6= j and does not vanish at ν(~αj). this will show that there cannot be any linear dependence
among the m points ν(~αj).

since {Dj}j spans a linear space of dimension d, and since {B1, · · · , Bd} is a basis of this space,
the vectors ~α1, . . . , ~αm span a d-dimensional linear space. without loss of generality, consider ~α1,
we can find d−1 other vectors that are linearly independent with ~α1. therefore we can find a linear
form f1 : (y1, . . . , yd) 7→ β1y1 + · · · + βdyd which vanishes at all these d − 1 vectors but does not
vanish at ~αj . without loss of generality, let the remaining m− d vectors be ~αd+1, . . . , ~αm. for each
j′ = d + 1, · · · ,m, since ~αj′ is not a scaled copy of ~αj , we can find a linear form fj′ such that fj′

vanishes at ~αj′ but does not vanish at ~αj . Now consider the product of these m−d+1 linear forms,

f = f1fd+1 . . . fm.
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If we take k to be m − d + 1, f itself is a linear form on R(d+k−1
d−1 ), and can be evaluated at

ν(~α1), . . . , ν(~αm), and

f(ν(~α)) = f1(~α)fd+1(~α) . . . fm(~α), ∀~α ∈ Rd.

By construction, f(ν(~αj)) = 0 for all j 6= 1 and f(ν(~α1)) 6= 0. Since the choice of ~α1 was
arbitrary, the construction works for arbitrary ~αj , and so ν(~α1), . . . , ν(~αm) are linearly independent
for k = m− d+ 1. This completes the proof.

Remark 1. In the last part of the proof, since no two ~αj , ~αj′ are linear copies of each other, the m
vectors ~α1, . . . , ~αm can be seen as points in the projective space Pd−1. The mapping νk : Pd−1 →
P(d+k

d )−1 is known as the Veronese embedding, and its image the Veronese variety. In the special
case when d is two, the fact that no k+ 1 points on νk(P1) are linearly dependent can be somewhat
more directly shown by an application of the Vandermonde determinant.

4.3 A Worst Case Lower Bound on the Number of Samples Needed

We now show that the number of samples specified in Theorem 8 is tight.

Proposition 3. For any m and d < m, there exist m distributions {Dj}j spanning a d-dimensional
linear space, such that for any k ≤ m−d, the set of vectors {F vi,j}vi,j are not linearly independent,
for at least one bidder i.

Proof. We first show that there are Dj ’s that make {(⊗Dj)k}j linearly dependent for any k ≤ m−d.
First consider the case d = 2.

Let B1 and B2 be two independent vectors in the span of Dj ’s. Then each Dj can be written
as αj1B1 + αj2B2. Following a similar calculation as in the proof of Theorem 8, we have(

⊗Dj
)k

=
(
⊗(αj1B1 + αj2B2)

)k
=

∑
`1+`2=k,
`1,`2≥0

α`1
j1α

`2
j2C`1`2 ,

where C`1,··· ,`d is the sum of terms that are Kronecker products of B1 and B2, such that in each
term B1 appears `1 times, and B2 appears `2 times. For example, C1,2 = B1 ⊗ B2 ⊗ B2 + B2 ⊗
B1⊗B2 +B2⊗B2⊗B1. But we have just shown that all the m vectors (⊗Dj)k can be written as
a linear combinations of k+ 1 vectors, C0,k, C1,k−1, · · · , Cs,0. Therefore, For k < m− 1, the vectors
(⊗Dj)k cannot be linearly independent.

Now by (2), as long as we can construct, for one vi, such that the conditional distribution Dj
vi

is the same for all j, then the vectors F vi,j cannot be linearly independent as well. This is easy to
do, since Dj

vi only concerns a proper subset of coordinates of Dj , and we have complete freedom
to construct the rest of the distribution.

The general case d > 2 is an easy generalization of the case of d = 2: given d linearly independent
D1, · · · , Dd, we can always let the remaining distributions be linear combinations of D1 and D2,
and repeat the calculation above.
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5 Discussion

Criticism on the Auction of Crémer and McLean. The surplus-extracting auction of Crémer
and McLean is often seen as a critique on the model of auction design for correlated agents.
The (arguably) counterintuitive phenomenon of surplus extraction is “blamed” on the unrealistic
combination of several assumptions in the model: first, that the agents are risk neutral and only
considers their expected linear utilities; second, that the auctioneer has exact knowledge on the
underlying distribution for the agents’ values; and third, that the agents themselves have the same
exact knowledge. The second assumption, and the auctioneer’s heavy use of this prior knowledge,
is seen as a violation of the desired Wilson’s principle. Our result suggests tha the precision of the
auctioneer’s prior knowledge may not be the main cause of the mechanism’s anomalous performance
— this requirement can be weakened, as long as sampling from the underlying distribution is
available, and the number of samples does not have to be large. This suggests fine-tuning criticism
on these auctions on the agents’ precise prior knowledge and the interim individual rationality
assumption.

In general, in Bayesian mechanism design, assumptions such as “who knows what” are crucial
modeling decisions. Our approach via sample complexity may be useful in examining mechanisms’
sensitivity to these assumptions and hence help with fine-tuning the modeling process.

Beyond Finiteness. Even though our approach involves inverting matrices whose entries are
probabilities of atom events, there may be hope to extend the approach to infinite-support distri-
butions, since there have been such extensions to Crémer and McLean’s auction [e.g. 13, 16]. This
seems a prerequisite for possibly extending the approach further to infinite families of distributions.
We think it would be interesting to either show an impassable gap between infinite and finite fami-
lies, or give conditions that makes surplus extraction possible with finitely many samples on infinite
families.
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